Gait Recognition in Different Terrains with IMUs Based on Attention Mechanism Feature Fusion Method

被引:0
|
作者
Mengxue Yan
Ming Guo
Jianqiang Sun
Jianlong Qiu
Xiangyong Chen
机构
[1] Linyi University,School of Automation and Electrical Engineering
来源
Neural Processing Letters | 2023年 / 55卷
关键词
Gait recognition; Inertial measurement unit; Lightweight convolutional neural network; Attention mechanism; Feature fusion;
D O I
暂无
中图分类号
学科分类号
摘要
Gait recognition is significant in the fields of disease diagnosis and rehabilitation training by studying the characteristics of human gait with different terrain. To address the problem that the transformation of different outdoor terrains can affect the gait of walkers, a gait recognition algorithm based on feature fusion with attention mechanism is proposed. First, the acceleration, angular velocity and angle information collected by the inertial measurement unit is used; then the acquired inertial gait data is divided into periods to obtain the period data of each step; then the features are extracted from the data, followed by the visualization of the one-dimensional data into two-dimensional images. A lightweight model is designed to combine convolutional neural network with attention mechanism, and a new attention mechanism-based feature fusion method is proposed in this paper for extracting features from multiple sensors and fusing them for gait recognition. The comparison experimental results show that the recognition accuracy of the model proposed in this paper can reach 89%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, and it has good recognition effect on gait under different terrain.
引用
收藏
页码:10215 / 10234
页数:19
相关论文
共 50 条
  • [1] Gait Recognition in Different Terrains with IMUs Based on Attention Mechanism Feature Fusion Method
    Yan, Mengxue
    Guo, Ming
    Sun, Jianqiang
    Qiu, Jianlong
    Chen, Xiangyong
    NEURAL PROCESSING LETTERS, 2023, 55 (08) : 10215 - 10234
  • [2] A speech emotion recognition method for the elderly based on feature fusion and attention mechanism
    Jian, Qijian
    Xiang, Min
    Huang, Wei
    THIRD INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION; NETWORK AND COMPUTER TECHNOLOGY (ECNCT 2021), 2022, 12167
  • [3] SAFLFusionGait: Gait recognition network with separate attention and different granularity feature learnability fusion
    Hu, Yuchen
    Chen, Zhenxue
    Liu, Chengyun
    Liang, Tian
    Lu, Dan
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 104
  • [4] GaitFFDA: Feature Fusion and Dual Attention Gait Recognition Model
    Wu, Zhixiong
    Cui, Yong
    TSINGHUA SCIENCE AND TECHNOLOGY, 2025, 30 (01): : 345 - 356
  • [5] Gait Recognition Based On the Feature Fusion
    Zhu Jinghong
    Fang Shuai
    Fang Jie
    Wang Yong
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 5449 - 5452
  • [6] Multi-View gait recognition method based on dynamic and static feature fusion
    Zhang Weihu
    Zhang Meng
    Wei Fan
    2018 INTERNATIONAL CONFERENCE ON SENSOR NETWORKS AND SIGNAL PROCESSING (SNSP 2018), 2018, : 287 - 291
  • [7] Grape Disease Recognition Model Based on Attention Mechanism and Feature Fusion
    Jia L.
    Ye Z.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2023, 54 (07): : 223 - 233
  • [8] Lightweight Human Ear Recognition Based on Attention Mechanism and Feature Fusion
    Lei, Yanmin
    Pan, Dong
    Feng, Zhibin
    Qian, Junru
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [9] Pin-missing defect recognition based on feature fusion and spatial attention mechanism
    He, Hui
    Li, Yuchen
    Yang, Jing
    Wang, Zeli
    Chen, Bo
    Jiao, Runhai
    ENERGY REPORTS, 2022, 8 : 656 - 663
  • [10] Cross-View Gait Recognition Based on Feature Fusion
    Hong, Qi
    Wang, Zhongyuan
    Chen, Jianyu
    Huang, Baojin
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 640 - 646