On the Rankin–Selberg L-function related to the Godement–Jacquet L-function

被引:0
作者
A. Kaur
A. Sankaranarayanan
机构
[1] University of Hyderabad,School of Mathematics and Statistics
来源
Acta Mathematica Hungarica | 2023年 / 169卷
关键词
Rankin–Selberg ; -function; Godement–Jacquet ; -function; Riesz mean asymptotic formula; Hecke–Maass form; 11F30; 11N75;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the k-th Riesz mean for the coefficients of the Rankin–Selberg L-function related to the Godement–Jacquet L-function with respect to SL(n,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(n,\mathbb{Z})$$\end{document} and establish an asymptotic formula with a good error term for k≥k0(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \geq k_0(n)$$\end{document} where k0(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_0(n)$$\end{document} is a positive integer depending only on n.
引用
收藏
页码:88 / 107
页数:19
相关论文
empty
未找到相关数据