Second-order multiobjective symmetric duality involving cone-bonvex functions

被引:0
作者
S. K. Gupta
N. Kailey
机构
[1] Indian Institute of Technology Patna,Department of Mathematics
[2] Thapar University,School of Mathematics and Computer Applications
来源
Journal of Global Optimization | 2013年 / 55卷
关键词
Multiobjective programming; Symmetric duality; -; -bonvexity; Duality theorems; Efficient solutions;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a new pair of second-order multiobjective symmetric dual programs over arbitrary cones is formulated and appropriate duality theorems are then established under K-η-bonvexity assumptions. We identify a function lying exclusively in the class of K-η-bonvex and not in class of invex function already existing in literature. Self duality is also obtained by assuming the functions involved to be skew-symmetric.
引用
收藏
页码:125 / 140
页数:15
相关论文
共 36 条
[1]  
Ahmad I.(2010)On multiobjective second-order symmetric duality with cone constraints Eur. J. Oper. Res. 204 402-409
[2]  
Husain Z.(1973)On symmetric duality in nonlinear programming Oper. Res. 21 1-9
[3]  
Bazaraa M.S.(2007)A survey of recent developments in multiobjective optimization Ann. Oper. Res. 154 29-50
[4]  
Goode J.J.(1965)Symmetric dual nonlinear programs Pac. J. Math. 15 809-812
[5]  
Chinchuluun A.(2001)Second-order symmetric duality with generalized convexity Opsearch 38 210-222
[6]  
Pardalos P.M.(2010)Nondifferentiable multiobjective Mond-Weir type second-order symmetric duality over cones Optim. Lett. 4 293-309
[7]  
Dantzig G.B.(2010)Second-order multiobjective symmetric duality with cone constraints Eur. J. Oper. Res. 205 247-252
[8]  
Eisenberg E.(1985)Optimality criteria in nonlinear programming involving nonconvex functions J. Math. Anal. Appl. 105 104-112
[9]  
Cottle R.W.(2005)Symmetric duality in multiobjective programming involving generalized cone-invex functions Eur. J. Oper. Res. 165 592-597
[10]  
Gulati T.R.(1975)Second and higher-order duality in nonlinear programming J. Math. Anal. Appl. 51 607-620