We study the behavior of positive solutions of the following Dirichlet problem
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\left \{ \begin{array}{ll} -\Delta_{p}u=\lambda u^{s-1}+u^{q-1} &\quad {\rm in}
\enspace \Omega \\ u_{\mid\partial \Omega}=0 \end{array}
\right. $$\end{document}when s → p−. Here \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${p >1 , s\,{\in}\,]1,p]}$$\end{document} and q > p with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${q\leq\frac{Np}{N-p}}$$\end{document} if N > p.
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
Nanjing Agr Univ, Coll Sci, Nanjing 210095, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
机构:
Univ Tunis El Manar, Fac Sci Tunis, UR11ES22 Potentiels & Probabilites, Tunis 2092, TunisiaTaibah Univ, Fac Sci, Dept Math, Al Madinah Al Munawarah, Saudi Arabia