Kernel clustering using a hybrid memetic algorithm

被引:0
|
作者
Yangyang Li
Peidao Li
Bo Wu
Lc Jiao
Ronghua Shang
机构
[1] Xidian University,Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China
来源
Natural Computing | 2013年 / 12卷
关键词
Kernel cluster; Memetic algorithm; Local learning; UCI;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a novel kernel clustering algorithm using a hybrid memetic algorithm for clustering complex, unlabeled, and linearly non-separable datasets. The kernel function can transform nonlinear data into a high dimensional feature space. It increases the probability of the linear separability of the patterns within the transformed space and simplifies the associated data structure. According to the distribution of various datasets, three local learning operators are designed; meanwhile double mutation operators incorporated into local learning operators to further enhance the ability of global exploration and overcome premature convergence effectively. The performance comparisons of the proposed method with k-means, kernel k-means, global kernel k-means and spectral clustering algorithms on artificial datasets and UCI datasets indicate that the proposed clustering algorithm outperforms the compared algorithms.
引用
收藏
页码:605 / 615
页数:10
相关论文
共 50 条
  • [1] Kernel clustering using a hybrid memetic algorithm
    Li, Yangyang
    Li, Peidao
    Wu, Bo
    Jiao, Lc
    Shang, Ronghua
    NATURAL COMPUTING, 2013, 12 (04) : 605 - 615
  • [2] A MEMETIC-GRASP ALGORITHM FOR CLUSTERING
    Marinakis, Yannis
    Marinaki, Magdalene
    Matsatsinis, Nikolaos
    Zopounidis, Constantin
    ICEIS 2008: PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL AIDSS: ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS, 2008, : 36 - 43
  • [3] A NOVEL HEURISTIC MEMETIC CLUSTERING ALGORITHM
    Craenen, B. G. W.
    Nandi, A. K.
    Ristaniemi, T.
    2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2013,
  • [4] Memetic Algorithm based Fuzzy clustering
    Do, Anh-Duc
    Cho, Siu-Yeung
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 2398 - 2404
  • [5] Kernel clustering algorithm
    Zhang, Li
    Zhou, Wei-Da
    Jiao, Li-Cheng
    Jisuanji Xuebao/Chinese Journal of Computers, 2002, 25 (06): : 587 - 590
  • [6] Gene Clustering Using Particle Swarm Optimizer Based Memetic Algorithm
    Ji, Zhen
    Liu, Wenmin
    Zhu, Zexuan
    ADVANCES IN SWARM INTELLIGENCE, PT I, 2011, 6728 : 587 - 594
  • [7] Solving text clustering problem using a memetic differential evolution algorithm
    Mustafa, Hossam M. J.
    Ayob, Masri
    Albashish, Dheeb
    Abu-Taleb, Sawsan
    PLOS ONE, 2020, 15 (06):
  • [8] Efficient Clustering Using Memetic Adaptive Hill Climbing Algorithm in WSN
    Manikandan, M.
    Sakthivel, S.
    Vivekanandhan, V.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 35 (03): : 3169 - 3185
  • [9] Hybrid fuzzy modelling using memetic algorithm for hydrocyclone control
    Wong, KW
    Ong, YS
    Eren, R
    Fung, CC
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 4188 - 4193
  • [10] A Recommendation Algorithm Using Hybrid Clustering
    Gong, SongJie
    2009 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION SYSTEMS AND APPLICATIONS, PROCEEDINGS, 2009, : 79 - 82