The lambda number of the power graph of a finite p-group

被引:0
作者
Siddhartha Sarkar
Mayank Mishra
机构
[1] Indian Institute of Science Education and Research Bhopal,Department of Mathematics
来源
Journal of Algebraic Combinatorics | 2023年 / 57卷
关键词
Power graph; -labelling; -number; Finite ; -group; 05C25; 05C78; 20D15;
D O I
暂无
中图分类号
学科分类号
摘要
An L(2, 1)-labelling of a finite graph Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma $$\end{document} is a function that assigns integer values to the vertices V(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(\varGamma )$$\end{document} of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma $$\end{document} (colouring of V(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(\varGamma )$$\end{document} by Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}$$\end{document}) so that the absolute difference of two such values is at least 2 for adjacent vertices and is at least 1 for vertices, which are precisely distance 2 apart. The lambda number λ(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda (\varGamma )$$\end{document} of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma $$\end{document} measures the least number of integers needed for such a labelling (colouring). A power graph ΓG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma _G$$\end{document} of a finite group G is a graph with vertex set as the elements of G and two vertices are joined by an edge if and only if one of them is a positive integer power of the other. It is known that λ(ΓG)≥|G|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda (\varGamma _G) \ge |G|$$\end{document} for any finite group. In this paper, we show that if G is a finite group of a prime power order, then λ(ΓG)=|G|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda (\varGamma _G) = |G|$$\end{document} if and only if G is neither cyclic nor a generalized quaternion 2-group. This settles a partial classification of finite groups achieving the lower bound of lambda number.
引用
收藏
页码:101 / 110
页数:9
相关论文
共 30 条
  • [1] Abawajy J(2013)Power graphs: a survey Electron. J. Graph Theory Appl. (EJGTA) 1 125-147
  • [2] Kelarev A(1968)-groups of finite order Sibirsk. Mat. Žh. 9 1284-1306
  • [3] Chowdhury M(2010)The power graph of a finite group, II J. Group Theory 13 779-783
  • [4] Berkovič JG(2011)The power graph of a finite group Discrete Math. 311 1220-1222
  • [5] Cameron PJ(2009)Undirected power graphs of semigroups Semigroup Forum 78 410-426
  • [6] Cameron PJ(1980)Frequency assignment: theory and application Proc. IEEE 68 1497-1514
  • [7] Ghosh S(1931)Über die Anzahl der eigentlichen Untergruppen und der Elemente von gegebener Ordnung in Math. Ann. 104 778-793
  • [8] Chakrabarty I(2021)-Gruppen AKCE Int. J. Graphs Comb. 18 65-94
  • [9] Ghosh S(2018)Recent developments on the power graph of finite groups–a survey Discrete Appl. Math. 239 159-164
  • [10] Sen MK(2021)The strong metric dimension of the power graph of a finite group J. Algebraic Combin. 53 743-754