2-Complex Symmetric Weighted Composition Operators on the Weighted Bergman Spaces of the Half-Plane

被引:0
作者
Yan-Fu Xue
Zhi-Jie Jiang
Cheng-Shi Huang
机构
[1] Sichuan University of Science and Engineering,School of Mathematics and Statistics
[2] Sichuan University of Science and Engineering,South Sichuan Center for Applied Mathematics
来源
Complex Analysis and Operator Theory | 2023年 / 17卷
关键词
Weighted Bergman space on the right half-plane; Weighted composition operator; 2-Complex symmetric operator; Reproducing kernel; Primary 47B38; Secondary 47B33; 47B37; 30H05;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, 2-complex symmetric weighted composition operators induced by three type symbols on the weighted Bergman spaces of the right half-plane with three conjugations Jf(z)=f(z¯)¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Jf(z)=\overline{f(\bar{z})}$$\end{document}, Jsf(z)=f(z¯+is)¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_sf(z)=\overline{f(\bar{z}+is)}$$\end{document} and J∗f(z)=1zα+2f(1z¯)¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_*f(z)=\frac{1}{z^{\alpha +2}}\overline{f(\frac{1}{\bar{z}})}$$\end{document} are characterized by building the relations between some parameters. Some examples of such operators are also given.
引用
收藏
相关论文
共 45 条
[1]  
Elliott SJ(2009)Composition operators on weighted Bergman spaces of a half plane Proc. Edinb. Math. Soc. 54 373-379
[2]  
Wynn A(2014)Mathematical and physical aspects of complex symmetric operators J. Phys. A 47 353001-1315
[3]  
Garcia SR (2006)Complex symmetric operators and applications Trans. Am. Math. Soc. 358 1285-3931
[4]  
Prodan E(2007)Complex symmetric operators and applications II Trans. Am. Math. Soc. 359 3913-1260
[5]  
Putinar M(2009)Complex symmetric partial isometries J. Funct. Anal. 257 1251-6077
[6]  
Garcia SR(2010)Some new classes of complex symmetric operators Trans. Am. Math. Soc. 362 6065-384
[7]  
Putinar M(2020)Complex symmetric composition operators induced by linear fractional maps J. Indiana Univ. Math. 69 367-1500
[8]  
Garcia SR(2020)Complex symmetric weighted composition operators on the space Complex Var. Elliptic Equ. 65 1488-351
[9]  
Putinar M(2021)Weighted composition-differentiation operators on the Hardy space Banach J. Math. Anal. 15 44-118
[10]  
Garcia SR(2021)Complex symmetric weighted composition operators on Bergman spaces and Lebesgue spaces Anal. Math. Phys. 12 43-630