Dynamics of a Discrete-Time Predator–Prey System with Holling II Functional Response

被引:0
作者
Carlos F. Arias
Gamaliel Blé
Manuel Falconi
机构
[1] UJAT,División Académica de Ciencias Básicas
[2] UNAM,Departamento de Matemáticas, Facultad de Ciencias
来源
Qualitative Theory of Dynamical Systems | 2022年 / 21卷
关键词
Neimark–Sacker bifurcation; Limit cycle; Holling II functional response; Local dynamics; Chaos;
D O I
暂无
中图分类号
学科分类号
摘要
The dynamics behavior of a discrete-time predator–prey system, with Holling II functional response, is analyzed. The model shows a rich dynamical behavior in the feasible region. Some invariant sets are found and parameter conditions for the existence and stability of the fixed points are given. A parameter region where the system exhibits either a period-doubling or a Neimark–Sacker bifurcation is shown. In addition, conditions are provided on parameters that lead to chaotic dynamics. Finally, to illustrate our theoretical analysis some numerical simulations are shown.
引用
收藏
相关论文
共 40 条
[21]  
Saito Y(2016)Dynamics of a discrete-time predator–prey system Ad. Differ. Equ. 2016 1-undefined
[22]  
Ma W(undefined)undefined undefined undefined undefined-undefined
[23]  
Hara T(undefined)undefined undefined undefined undefined-undefined
[24]  
Volterra V(undefined)undefined undefined undefined undefined-undefined
[25]  
Wang J(undefined)undefined undefined undefined undefined-undefined
[26]  
Fečkan M(undefined)undefined undefined undefined undefined-undefined
[27]  
Wiede V(undefined)undefined undefined undefined undefined-undefined
[28]  
Varriale MC(undefined)undefined undefined undefined undefined-undefined
[29]  
Hilker FM(undefined)undefined undefined undefined undefined-undefined
[30]  
Xiao Y(undefined)undefined undefined undefined undefined-undefined