Dynamics of a Discrete-Time Predator–Prey System with Holling II Functional Response

被引:0
作者
Carlos F. Arias
Gamaliel Blé
Manuel Falconi
机构
[1] UJAT,División Académica de Ciencias Básicas
[2] UNAM,Departamento de Matemáticas, Facultad de Ciencias
来源
Qualitative Theory of Dynamical Systems | 2022年 / 21卷
关键词
Neimark–Sacker bifurcation; Limit cycle; Holling II functional response; Local dynamics; Chaos;
D O I
暂无
中图分类号
学科分类号
摘要
The dynamics behavior of a discrete-time predator–prey system, with Holling II functional response, is analyzed. The model shows a rich dynamical behavior in the feasible region. Some invariant sets are found and parameter conditions for the existence and stability of the fixed points are given. A parameter region where the system exhibits either a period-doubling or a Neimark–Sacker bifurcation is shown. In addition, conditions are provided on parameters that lead to chaotic dynamics. Finally, to illustrate our theoretical analysis some numerical simulations are shown.
引用
收藏
相关论文
共 40 条
[1]  
Adler FR(1993)Migration alone can produce persistence of host-parasitoid models Am. Nat. 141 642-650
[2]  
Cui Q(2016)Complex dynamics of a discrete-time predator–prey system with Holling IV functional response Chaos Solitons Fractals 87 158-171
[3]  
Zhang Q(2017)Complexity and chaos control in a discrete-time prey–predator model Commun. Nonlinear Sci. Numer. Simul. 49 113-134
[4]  
Qiu Z(1997)Genetic variation and the persistence of predator–prey interactions in the Nicholson–Bailey model J. Theor. Biol. 188 109-120
[5]  
Hu Z(2018)Bifurcations in a discrete predator–prey model with nonmonotonic functional response J. Math. Anal. Appl. 464 201-230
[6]  
Din Q(2017)Stability and Neimark–Sacker bifurcation of a ratio-dependence predator–prey model Math. Methods Appl. Sci. 40 4109-4117
[7]  
Doebeli M(2019)Bifurcations of a two-dimensional discrete-time predator–prey model Adv. Differ. Equ. 56 1-23
[8]  
Huang J(2006)The dynamic effects of an inducible defense in the Nicholson–Bailey model Theor. Pop. Biol 70 43-55
[9]  
Ruan S(2010)Bifurcations of a discrete prey–predator model with Holling type II functional response Discrete Contin. Dyn. Syst. Ser. B 14 159-176
[10]  
Xiao D(1978)Snap-back repellers imply chaos in J. Math. Anal. Appl. 63 199-223