Rheological and sensory properties of toothpastes

被引:0
作者
Amit Ahuja
Andrei Potanin
机构
[1] Colgate-Palmolive Company,
来源
Rheologica Acta | 2018年 / 57卷
关键词
Toothpastes; Stringiness; Shape retention; Yield stress; Slump test;
D O I
暂无
中图分类号
学科分类号
摘要
Complex rheological trends of several commercially available and lab-made prototype toothpastes are reported. The flow curves are generated using the rotational rheometers with a series of rheological procedures, comprising of stress ramps, creep-recovery, stepped-shear rates, and dynamic oscillatory strain sweeps performed on toothpastes. Intricacies due to the history and the effects of pre-conditioning of the samples are discussed. However, the main goal of this work was to identify the correlations between the rheological measurements and the consumer-perceived properties of toothpastes. Shape retention and stringiness are the main sensory properties of interest that were identified and evaluated by the panelists. A custom-built experimental setup is used to quantify shape retention of a toothpaste ribbon on a brush and on a flat surface in a test which resonates with the popular slump test. It is demonstrated that the degree of shape retention correlates with the yield stress and the instantaneous viscosity. A comparison of yield stresses obtained using different methods in relation to degree of shape retention is presented. An experimental setup designed to measure stringiness of toothpastes is delineated. The stringiness measured with this device correlates well with human perception and also with the slope of the flow curve, i.e., the higher the degree of shear thinning, the less stringy the pastes tend to be. For lab-made prototype toothpastes, basic structure-property relations are established in terms of correlations between the three formulation variables: thickening silica, Xanthan gum, and carboxymethyl cellulose (CMC).
引用
收藏
页码:459 / 471
页数:12
相关论文
共 33 条
[1]  
Barnes HA(1997)Thixotropy—a review J Non-Newtonian Fluid Mech 70 1-33
[2]  
Brummer R(1999)Rheological studies to objectify sensations occurring when cosmetic emulsions are applied to the skin Colloids Surf A Physicochem Eng Asp 152 89-94
[3]  
Godersky S(1977)Die Bestimmung der wahren Fliesskurven nicht-newtonischer Flüssigkeiten und plastischer Stoffe mit der Methode der repräsentativen Viskosität Rheol Acta 16 1-22
[4]  
Giesekus H(2011)Two step yielding in attractive colloids: transition from gels to attractive glasses Soft Matter 7 2456-2470
[5]  
Langer G(2013)Apparent elongational yield stress of soft matter J Rheol 57 627-646
[6]  
Koumakis N(2009)How to characterize yield stress fluids with capillary breakup extensional rheometry (CaBER)? Appl Rheol 19 41969-1116
[7]  
Petekidis G(2010)Extensional rheology of concentrated emulsions as probed by capillary breakup elongational rheometry (CaBER) Rheol Acta 49 1103-223
[8]  
Martine L(2011)Flows and heterogeneities with a vane tool: magnetic resonance imaging measurements J. Rheol 55 197-1189
[9]  
Buggisch H(1996)A fifty cent rheometer for yield stress measurements J Rheol 40 1179-718
[10]  
Willenbacher N(2005)Fifty-cent rheometer for yield stress measurements: from slump to spreading flow J Rheol 49 705-870