On the growth behavior of partial quotients in continued fractions

被引:0
作者
Lei Shang
Min Wu
机构
[1] Sun Yat-sen University,School of Mathematics
[2] South China University of Technology,School of Mathematics
来源
Archiv der Mathematik | 2023年 / 120卷
关键词
Continued fractions; Partial quotients; Residual sets; Hausdorff dimension; Primary 11K50; Secondary 26A21; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
Let [a1(x),a2(x),a3(x),…]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[a_1(x),a_2(x),a_3(x),\ldots ]$$\end{document} be the continued fraction expansion of an irrational number x∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in (0,1)$$\end{document}. It is known that for Lebesgue almost all x∈(0,1)\Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in (0,1)\setminus {\mathbb {Q}}$$\end{document}, lim infn→∞logan(x)logn=0andlim supn→∞logan(x)logn=1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \liminf _{n \rightarrow \infty } \frac{\log a_n(x)}{\log n}=0 \ \ \ \text {and}\ \ \ \limsup _{n \rightarrow \infty } \frac{\log a_n(x)}{\log n}=1. \end{aligned}$$\end{document}In this note, the Baire classification and Hausdorff dimension of E(α,β):=x∈(0,1)\Q:lim infn→∞logan(x)logn=α,lim supn→∞logan(x)logn=β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} E(\alpha ,\beta ):=\left\{ x\in (0,1)\setminus {\mathbb {Q}}: \liminf _{n \rightarrow \infty } \frac{\log a_n(x)}{\log n}=\alpha ,\ \limsup _{n \rightarrow \infty } \frac{\log a_n(x)}{\log n}=\beta \right\} \end{aligned}$$\end{document}for all α,β∈[0,∞]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \beta \in [0,\infty ]$$\end{document} with α≤β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \le \beta $$\end{document} are studied. We prove that E(α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(\alpha ,\beta )$$\end{document} is residual if and only if α=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =0$$\end{document} and β=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta =\infty $$\end{document}, and the Hausdorff dimension of E(α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(\alpha ,\beta )$$\end{document} is as follows: dimHE(α,β)=1,α=0;1/2,α>0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \dim _{\textrm{H}} E(\alpha ,\beta ) = \left\{ \begin{array}{ll} 1, &{} {\alpha =0;} \\ 1/2, &{} {\alpha >0.} \end{array} \right. \end{aligned}$$\end{document}Moreover, the Hausdorff dimension of the intersection of E(α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(\alpha ,\beta )$$\end{document} and the set of points with non-decreasing partial quotients is also provided.
引用
收藏
页码:297 / 305
页数:8
相关论文
共 27 条
  • [1] Bernstein F(1911)Über eine Anwendung der Mengenlehre auf ein der Theorie der säkularen Störungen herrührendes Problem Math. Ann. 71 417-439
  • [2] Borel É(1912)Sur un probl Math. Ann. 72 578-584
  • [3] Fan A(2009)me de probabilit Ergod. Theor. Dyn. Syst. 29 73-109
  • [4] Liao L(2021)s relatif aux fractions continues Ramanujan J. 56 891-909
  • [5] Wang B(2021)On Khintchine exponents and Lyapunov exponents of continued fractions Acta Math. Sci. Ser. B 41 1896-1910
  • [6] Wu J(2022)Some exceptional sets of Borel-Bernstein theorem in continued fractions Forum Math. 34 821-830
  • [7] Fang L(1941)Multifractal analysis of the convergence exponent in continued fractions Math. Proc. Camb. Philos. Soc. 37 199-228
  • [8] Ma J(1928)On upper and lower fast Khintchine spectra of continued fractions Proc. Mat. Fyz. 36 91-106
  • [9] Song K(2012)The fractional dimensional theory of continued fractions Proc. Am. Math. Soc. 140 1267-1279
  • [10] Fang L(2022)Zur metrischen Theorie der diophantischen Approximationen Studia Math. 264 1-25