Spectral clustering based on similarity and dissimilarity criterion

被引:0
作者
Bangjun Wang
Li Zhang
Caili Wu
Fan-zhang Li
Zhao Zhang
机构
[1] Beijing Jiaotong University,
[2] Soochow University,undefined
来源
Pattern Analysis and Applications | 2017年 / 20卷
关键词
Spectral clustering; Normalized cut; Similarity criterion; Dissimilarity criterion;
D O I
暂无
中图分类号
学科分类号
摘要
The clustering assumption is to maximize the within-cluster similarity and simultaneously to minimize the between-cluster similarity for a given unlabeled dataset. This paper deals with a new spectral clustering algorithm based on a similarity and dissimilarity criterion by incorporating a dissimilarity criterion into the normalized cut criterion. The within-cluster similarity and the between-cluster dissimilarity can be enhanced to result in good clustering performance. Experimental results on toy and real-world datasets show that the new spectral clustering algorithm has a promising performance.
引用
收藏
页码:495 / 506
页数:11
相关论文
共 39 条
  • [1] Barreto A(2003)A taxonomy for spatiotemporal connectionist networks revisited: the unsupervised case Neural Comput 15 1255-1320
  • [2] Araujo AA(1998)Some new indexes of cluster validity IEEE Trans Pattern Recognit Mach Intell 28 301-315
  • [3] Kremer S(2012)Spectral clustering: a semisupervised approach Neurocomputing 77 229-242
  • [4] Bezdek JC(2011)Parallel spectral clustering in distributed systems IEEE Trans Pattern Recognit Mach Intell 33 568-586
  • [5] Pal RN(1979)A cluster separation measure IEEE Trans Pattern Recognit Mach Intell 1 224-227
  • [6] Chen W(2006)Statistical comparisons of classifiers over multiple data sets J Mach Learn Res 7 1-30
  • [7] Feng G(1937)The use of ranks to avoid the assumption of normality implicit in the analysis of variance J Am Stat Assoc 32 675-701
  • [8] Chen WY(1998)Characterizing virtual Eigensignatures for general purpose face recognition Face Recognit: From Theory Appl, NATO ASI Ser F, Comput Syst Sci 163 446-456
  • [9] Song Y(1992)New spectral methods for ratio cut partitioning and clustering IEEE Trans Comput Aided Des Integr Circuits Syst 11 1074-1085
  • [10] Bai H(2010)Normality-based validation for crisp clustering Pattern Recogn 43 782-795