Zero phase delay in negative-refractive-index photonic crystal superlattices

被引:0
|
作者
Kocaman, S. [1 ]
Aras, M. S. [1 ]
Hsieh, P. [1 ]
McMillan, J. F. [1 ]
Biris, C. G. [2 ]
Panoiu, N. C. [2 ]
Yu, M. B. [3 ]
Kwong, D. L. [3 ]
Stein, A. [4 ]
Wong, C. W. [1 ]
机构
[1] Columbia Univ, Ctr Integrated Sci & Engn, Opt Nanostruct Lab, New York, NY 10027 USA
[2] UCL, Dept Elect & Elect Engn, Photon Grp, London WC1E 7JE, England
[3] Inst Microelect, Singapore 117685, Singapore
[4] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
EXPERIMENTAL-VERIFICATION; METAMATERIALS; LIGHT; GAP; PROPAGATION; BEHAVIOR; LENS;
D O I
10.1038/NPHOTON.2011.129
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that optical beams propagating in path-averaged zero-index photonic crystal superlattices can have zero phase delay. The nanofabricated superlattices consist of alternating stacks of negative index photonic crystals and positive index homogeneous dielectric media, where the phase differences corresponding to consecutive primary unit cells are measured with integrated Mach-Zehnder interferometers. These measurements demonstrate that at path-averaged zero-index frequencies the phase accumulation remains constant and equal to zero despite the increase in the physical path length. We further demonstrate experimentally that these superlattice zero-(n) over bar bandgaps remain invariant to geometrical changes of the photonic structure and have a center frequency which is deterministically tunable. The properties of the zero-(n) over bar gap frequencies, optical phase, and effective refractive indices are well described by detailed experimental measurements, rigorous theoretical analysis, and comprehensive numerical simulations.
引用
收藏
页码:499 / 505
页数:7
相关论文
共 50 条
  • [31] Microwave photonic crystal with tailor-made negative refractive index
    Vodo, P
    Parimi, PV
    Lu, WT
    Sridhar, S
    Wing, R
    APPLIED PHYSICS LETTERS, 2004, 85 (10) : 1858 - 1860
  • [32] Image transfer properties by photonic crystal slab with negative refractive index
    Chen, Hongbo
    Chen, Xiaoshuang
    Zhou, Renlong
    Lu, Wei
    SOLID STATE COMMUNICATIONS, 2008, 146 (3-4) : 192 - 196
  • [33] Negative-Refractive-Index Transmission Lines With Expanded Unit Cells
    Selvanayagam, Michael
    Eleftheriades, George V.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (11) : 3592 - 3596
  • [34] Photonic crystal narrow filters with negative refractive index structural defects
    Wang, Z. -Y.
    Chen, X. -M.
    He, X. -Q.
    Fan, S. -L.
    Yan, W. -Z.
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2008, 80 (421-430) : 421 - 430
  • [35] A novel design of photonic crystal lens based on negative refractive index
    Haxha, S.
    AbdelMalek, F.
    PIERS 2008 HANGZHOU: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, VOLS I AND II, PROCEEDINGS, 2008, : 947 - +
  • [36] Measurement of the phase refractive index of a photonic crystal fiber mode
    Vengelis, Julius
    Jarutis, Vygandas
    Sirutkaitis, Valdas
    OPTICS LETTERS, 2018, 43 (11) : 2571 - 2574
  • [37] Quad-band negative-refractive-index transmission-line unit cell with reduced group delay
    Markley, L.
    Eleftheriades, G. V.
    ELECTRONICS LETTERS, 2010, 46 (17) : 1206 - U60
  • [38] Compact ring resonators using negative-refractive-index microstrip line
    Scher, AD
    Rodenbeck, CT
    Chang, K
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2005, 45 (04) : 294 - 295
  • [39] Invited - A planar negative-refractive-index medium without resonant elements
    Oliner, AA
    2003 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3, 2003, : 191 - 194
  • [40] Antenna applications of negative-refractive-index transmission-line metamaterials
    Antoniades, Marco A.
    Qureshi, Fahad
    Eleftheriades, George V.
    2006 IEEE INTERNATIONAL WORKSHOP ON ANTENNA TECHNOLOGY: SMALL ANTENNAS AND NOVEL METAMATERIALS (IWAT), 2006, : 392 - +