Zero phase delay in negative-refractive-index photonic crystal superlattices

被引:0
|
作者
Kocaman, S. [1 ]
Aras, M. S. [1 ]
Hsieh, P. [1 ]
McMillan, J. F. [1 ]
Biris, C. G. [2 ]
Panoiu, N. C. [2 ]
Yu, M. B. [3 ]
Kwong, D. L. [3 ]
Stein, A. [4 ]
Wong, C. W. [1 ]
机构
[1] Columbia Univ, Ctr Integrated Sci & Engn, Opt Nanostruct Lab, New York, NY 10027 USA
[2] UCL, Dept Elect & Elect Engn, Photon Grp, London WC1E 7JE, England
[3] Inst Microelect, Singapore 117685, Singapore
[4] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
EXPERIMENTAL-VERIFICATION; METAMATERIALS; LIGHT; GAP; PROPAGATION; BEHAVIOR; LENS;
D O I
10.1038/NPHOTON.2011.129
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that optical beams propagating in path-averaged zero-index photonic crystal superlattices can have zero phase delay. The nanofabricated superlattices consist of alternating stacks of negative index photonic crystals and positive index homogeneous dielectric media, where the phase differences corresponding to consecutive primary unit cells are measured with integrated Mach-Zehnder interferometers. These measurements demonstrate that at path-averaged zero-index frequencies the phase accumulation remains constant and equal to zero despite the increase in the physical path length. We further demonstrate experimentally that these superlattice zero-(n) over bar bandgaps remain invariant to geometrical changes of the photonic structure and have a center frequency which is deterministically tunable. The properties of the zero-(n) over bar gap frequencies, optical phase, and effective refractive indices are well described by detailed experimental measurements, rigorous theoretical analysis, and comprehensive numerical simulations.
引用
收藏
页码:499 / 505
页数:7
相关论文
共 50 条
  • [21] Volumetric negative-refractive-index medium exhibiting broadband negative permeability
    Rudolph, Scott M.
    Grbic, Anthony
    JOURNAL OF APPLIED PHYSICS, 2007, 102 (01)
  • [22] Analysis of the bandgap of negative refractive index photonic crystal fiber
    Xu, Leicheng
    Chen, Heming
    PROCEEDINGS OF INTERNATIONAL SYMPOSIUM ON BIOPHOTONICS, NANOPHOTONICS AND METAMATERIALS, 2006, : 510 - +
  • [23] Demonstration of a Negative-Refractive-Index Lens Imaging System
    Eccleston, Kimberley W.
    Zhou, Yiwen
    Platt, Ian G.
    Tan, Adrian E-C
    Woodhead, Ian M.
    2022 ASIA-PACIFIC MICROWAVE CONFERENCE (APMC), 2022, : 901 - 903
  • [24] Demonstration of a Negative-Refractive-Index Lens Imaging System
    Eccleston, Kimberley W.
    Zhou, Yiwen
    Platt, Ian G.
    Tan, Adrian E.-C.
    Woodhead, Ian M.
    Asia-Pacific Microwave Conference Proceedings, APMC, 2022, 2022-November : 901 - 903
  • [25] Nonlinearity research of photonic crystal fiber with negative refractive index
    Sheng, Yong
    Jing, Sun
    Meng, Wen-Juan
    Ma, Jun-Feng
    Guangdianzi Jiguang/Journal of Optoelectronics Laser, 2010, 21 (SUPPL.): : 161 - 164
  • [26] Transmission spectra of one-di mensional photonic crystals including negative-refractive-index media
    SHEN Xiao-ming~(1*)
    OptoelectronicsLetters, 2005, (03) : 47 - 50
  • [27] Simulation of Refraction Focusing Using Negative-Refractive-Index Metamaterials
    Zaghloul, Amir I.
    Lee, Youn
    2008 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-9, 2008, : 4283 - 4286
  • [28] Gain in negative-refractive-index slow-light waveguides
    Hess, Ortwin
    Tsakmakidis, Kosmas L.
    Kirby, Edmund I.
    Pickering, Tim
    Hamm, Joachim M.
    ADVANCES IN SLOW AND FAST LIGHT IV, 2011, 7949
  • [29] Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media
    Wangberg, R
    Elser, J
    Narimanov, EE
    Podolskiy, VA
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2006, 23 (03) : 498 - 505
  • [30] Influence of granularity on the optical properties of a negative-refractive-index lens
    Li, J.
    Webb, K. J.
    PHYSICAL REVIEW A, 2008, 78 (01):