Zero phase delay in negative-refractive-index photonic crystal superlattices

被引:0
|
作者
Kocaman, S. [1 ]
Aras, M. S. [1 ]
Hsieh, P. [1 ]
McMillan, J. F. [1 ]
Biris, C. G. [2 ]
Panoiu, N. C. [2 ]
Yu, M. B. [3 ]
Kwong, D. L. [3 ]
Stein, A. [4 ]
Wong, C. W. [1 ]
机构
[1] Columbia Univ, Ctr Integrated Sci & Engn, Opt Nanostruct Lab, New York, NY 10027 USA
[2] UCL, Dept Elect & Elect Engn, Photon Grp, London WC1E 7JE, England
[3] Inst Microelect, Singapore 117685, Singapore
[4] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
EXPERIMENTAL-VERIFICATION; METAMATERIALS; LIGHT; GAP; PROPAGATION; BEHAVIOR; LENS;
D O I
10.1038/NPHOTON.2011.129
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that optical beams propagating in path-averaged zero-index photonic crystal superlattices can have zero phase delay. The nanofabricated superlattices consist of alternating stacks of negative index photonic crystals and positive index homogeneous dielectric media, where the phase differences corresponding to consecutive primary unit cells are measured with integrated Mach-Zehnder interferometers. These measurements demonstrate that at path-averaged zero-index frequencies the phase accumulation remains constant and equal to zero despite the increase in the physical path length. We further demonstrate experimentally that these superlattice zero-(n) over bar bandgaps remain invariant to geometrical changes of the photonic structure and have a center frequency which is deterministically tunable. The properties of the zero-(n) over bar gap frequencies, optical phase, and effective refractive indices are well described by detailed experimental measurements, rigorous theoretical analysis, and comprehensive numerical simulations.
引用
收藏
页码:499 / 505
页数:7
相关论文
共 50 条
  • [1] Zero phase accumulation in negative-index photonic crystal superlattices
    Kocaman, S.
    Aras, M. S.
    Hsieh, P. -C.
    Panoiu, N. C.
    Yu, M. B.
    Kwong, D. L.
    Stein, A.
    Wong, C. W.
    2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [2] Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding
    He, Jinlong
    Jin, Yi
    Hong, Zhi
    He, Sailing
    OPTICS EXPRESS, 2008, 16 (15) : 11077 - 11082
  • [3] Tunable phase shifter with zero refractive index photonic crystal
    Zhao, Xining
    Zhang, Xiaoping
    Cao, Pengfei
    Cheng, Lin
    Shao, Qunfeng
    Kong, Weijie
    Gong, Li
    OPTIK, 2013, 124 (17): : 2751 - 2753
  • [4] Metrics for negative-refractive-index materials
    Webb, KJ
    Yang, M
    Ward, DW
    Nelson, KA
    PHYSICAL REVIEW E, 2004, 70 (03):
  • [5] Natural Negative-Refractive-Index Materials
    Chen, Chih-Yu
    Hsu, Ming-Chien
    Hu, C. D.
    Lin, Yeu Chung
    PHYSICAL REVIEW LETTERS, 2021, 127 (23)
  • [6] Controlling the null photonic gap and zero refractive index in photonic superlattices with temperature-controllable-refractive-index materials
    Wu, Ye
    Ou, Pengfei
    Zhang, Ling
    Lin, Yingcheng
    Yang, Jiquan
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2020, 37 (04) : 1008 - 1020
  • [7] Negative and Zero Group Velocity in Microstrip/Negative-Refractive-Index Transmission-Line Couplers
    Mirzaei, Hassan
    Eleftheriades, George V.
    2010 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST (MTT), 2010, : 37 - 40
  • [8] Guided modes in negative-refractive-index waveguides
    Shadrivov, IV
    Sukhorukov, AA
    Kivshar, YS
    PHYSICAL REVIEW E, 2003, 67 (05):
  • [9] Layered superconductors as negative-refractive-index metamaterials
    Rakhmanov, A. L.
    Yampol'skii, V. A.
    Fan, J. A.
    Capasso, Federico
    Nori, Franco
    PHYSICAL REVIEW B, 2010, 81 (07)
  • [10] Negative-refractive-index fibres: TEM modes
    Novitsky, A. V.
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2006, 8 (10): : 864 - 866