Self-assembly of a functional electronic circuit directed by capillary interactions

被引:0
|
作者
K. Reynolds
A. O’Riordan
G. Redmond
机构
[1] Tyndall National Institute,
来源
Applied Physics A | 2010年 / 98卷
关键词
81.16.Dn; 68.03.Cd; 85.40.-e; 87.85.Rs; 85.45Xx;
D O I
暂无
中图分类号
学科分类号
摘要
We report on the use of capillary interactions to drive the self-assembly of an electronic circuit based on mesoscale building blocks. The specific target structure is a linear heterotetramer comprising non-identical millimetre-scale cubic blocks that, following assembly, forms a functioning astable multivibrator circuit. Importantly, the self-assembly process is designed to be unconstrained, i.e., each of the blocks are free to move in any way during assembly. To this end, solder droplets are selectively patterned on the block faces. On contact, capillary interactions between shape complimentary solder patterns on the blocks cause the molten solder droplets to coalesce and the blocks to self-assemble. In this way, capillary forces direct the alignment, registration, linking and electrical interconnection of each block during the assembly process. This demonstration of mesoscale self-assembly mediated by capillary interactions illustrates that the application of unconventional assembly paradigms to complex structure fabrication is feasible and that these approaches may yet yield viable strategies for fabrication of highly integrated systems.
引用
收藏
相关论文
共 50 条
  • [31] Directed self-assembly and crystallization of colloids
    Weck, Marcus
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [32] Topographically directed self-assembly of goldnanoparticles
    Dai, Qiu
    Rettner, Charles T.
    Davis, Blake
    Cheng, Joy
    Nelson, Alshakim
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (42) : 16863 - 16865
  • [33] Directed Self-Assembly of Nanoparticles for Nanomotors
    Dong, Bin
    Zhou, Tian
    Zhang, Hui
    Li, Christopher Y.
    ACS NANO, 2013, 7 (06) : 5192 - 5198
  • [34] Comparison of Directed Self-Assembly Integrations
    Somervell, Mark
    Gronheid, Roel
    Hooge, Joshua
    Nafus, Kathleen
    Delgadillo, Paulina Rincon
    Thode, Chris
    Younkin, Todd
    Matsunaga, Koichi
    Rathsack, Ben
    Scheer, Steven
    Nealey, Paul
    ADVANCES IN RESIST MATERIALS AND PROCESSING TECHNOLOGY XXIX, 2012, 8325
  • [35] Design technology co-optimization assessment for directed self-assembly-based lithography: design for directed self-assembly or directed self-assembly for design?
    Lai, Kafai
    Liu, Chi-Chun
    Tsai, Hsinyu
    Xu, Yongan
    Chi, Cheng
    Raghunathan, Ananthan
    Dhagat, Parul
    Hu, Lin
    Park, Oseo
    Jung, Sunggon
    Cho, Wooyong
    Morillo, Jaime
    Pitera, Jed
    Schmidt, Kristin
    Guillorn, Mike
    Brink, Markus
    Sanders, Daniel
    Felix, Nelson
    Bailey, Todd
    Colburn, Matthew
    JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, 2017, 16 (01):
  • [36] Directed Self-Assembly of Block Copolymers
    Wang, Qianqian
    Wu, Liping
    Wang, Jing
    Wang, Liyuan
    PROGRESS IN CHEMISTRY, 2017, 29 (04) : 435 - 442
  • [37] Directed self-assembly of block copolymers
    Avgeropoulos, Apostolis
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [38] Directed self-assembly of block copolymers
    Takenaka, Mikihito
    Hasegawa, Hirokazu
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2013, 2 (01) : 88 - 94
  • [39] Triblock Colloids for Directed Self-Assembly
    Chen, Qian
    Diesel, Erich
    Whitmer, Jonathan K.
    Bae, Sung Chul
    Luijten, Erik
    Granick, Steve
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (20) : 7725 - 7727
  • [40] Directed self-assembly for advanced chips
    David Z. Pan
    Nature Electronics, 2018, 1 : 530 - 531