Boundedness of Pseudo-Differential Operator Associated with Fractional Fourier Transform

被引:0
作者
Akhilesh Prasad
Manish Kumar
机构
[1] Indian School of Mines,
来源
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences | 2014年 / 84卷
关键词
Pseudo-differential operator; Fourier transform; Fractional Fourier transform; Sobolev space; 46F12;
D O I
暂无
中图分类号
学科分类号
摘要
Pseudo-differential operator Aaα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{a}^{\alpha }$$\end{document} associated with fractional Fourier transform involving the symbol a(x,ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(x,\xi )$$\end{document} is defined. An integral representation of pseudo-differential operator Aaα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{a}^{\alpha }$$\end{document} and boundedness of the composition of operators Δxr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{x}^{r}$$\end{document} and Aaα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{a}^{\alpha }$$\end{document} are obtained. An integral operator Aa,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{a,\alpha }$$\end{document} is defined and its boundedness property is studied.
引用
收藏
页码:549 / 554
页数:5
相关论文
共 11 条
  • [1] Almeida LB(1994)The fractional Fourier transform and time-frequency representations IEEE Trans Signal Process 42 3084-3091
  • [2] Bhosale BN(2002)Fractional Fourier transform of distributions of compact support Bull Calcutta Math Soc 94 349-358
  • [3] Chaudhary MS(2012)Fractional Fourier transform of tempered distributions and generalized pseudo-differential operators J Pseudo-Differ Oper Appl 3 239-254
  • [4] Pathak RS(1998)Fractional Fourier transform of generalized functions Integral Transform Spec Funct 7 299-312
  • [5] Prasad A(2011)Product of two generalized pseudo-differential operators involving fractional Fourier transform J Pseudo-Differ Oper Appl 2 355-365
  • [6] Kumar M(2006)A generalized pseudo-differential operator on Gel’fand-Shilov space and Sobolev space Indian J Pure Appl Math 37 223-235
  • [7] Zayed AI(undefined)undefined undefined undefined undefined-undefined
  • [8] Prasad A(undefined)undefined undefined undefined undefined-undefined
  • [9] Kumar M(undefined)undefined undefined undefined undefined-undefined
  • [10] Pathak RS(undefined)undefined undefined undefined undefined-undefined