Decomposition matrices for the square lattices of the Lie groups SU(2)×SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SU(2)\times SU(2)$$\end{document}

被引:0
作者
M. Bodner
Z. Grabowiecka
J. Patera
M. Szajewska
机构
[1] MIND Research Institute,Centre de recherches mathématiques
[2] Université de Montréal,Institute of Mathematics
[3] University of Bialystok,Département de mathématiques et de statistique
[4] Université de Montréal,undefined
关键词
group; Decomposition matrix; Fourier transform;
D O I
10.1007/s13324-019-00301-1
中图分类号
学科分类号
摘要
A method for the decomposition of data functions sampled on a finite fragment of rectangular lattice is described. The symmetry of a square lattice in a 2-dimensional real Euclidean space is either given by the semisimple Lie group SU(2)×SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SU(2)\times SU(2)$$\end{document} or equivalently by the Lie algebra A1×A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_1\times A_1$$\end{document}, or by the simple Lie group O(5) or its Lie algebra called C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_2$$\end{document} or equivalently B2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_2$$\end{document}. In this paper we consider the first of these possibilities which is applied to data which is given in 2 orthogonal directions—hence the method is a concatenation of two 1-dimensional cases. The asymmetry we underline here is a different density of discrete data points in the two orthogonal directions which cannot be studied with the simple Lie group symmetry.
引用
收藏
页码:2099 / 2108
页数:9
相关论文
共 12 条
[1]  
Atoyan A(2004)Properties of continuous Fourier extension of the discrete cosine transform and its multidimensional generalization J. Math. Phys. 45 2468-2491
[2]  
Patera J(2017)Decomposition matrices for the special case of data on the triangular lattice of Appl. Comput. Harmon. Anal. 43 346-353
[3]  
Bodner M(2018)Decomposition matrices for the special case of data on the triangular lattice of Appl. Comput. Harmon. Anal. 45 233-238
[4]  
Patera J(1980)Congruence number, a generalization of J. Math. Phys. 21 2026-90
[5]  
Szajewska M(2014) triality IEEE Signal Process. Mag. 80 80-undefined
[6]  
Bodner M(undefined)Big data analysis with signal processing graphs undefined undefined undefined-undefined
[7]  
Patera J(undefined)undefined undefined undefined undefined-undefined
[8]  
Szajewska M(undefined)undefined undefined undefined undefined-undefined
[9]  
Lemire FW(undefined)undefined undefined undefined undefined-undefined
[10]  
Patera J(undefined)undefined undefined undefined undefined-undefined