Poisson–Nernst–Planck model for an ionic transistor based on a semiconductor membrane

被引:0
|
作者
Alexey Nikolaev
Maria E. Gracheva
机构
[1] Clarkson University,Department of Physics
来源
关键词
Nanopore; Semiconductor membrane; Poisson–Nernst–Planck model; Ion flux; Computations; Nanotechnology;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we developed a Poisson–Nernst–Planck model of an ionic current flowing through a nanopore in a layered solid-state membrane made of a single highly-doped n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-Si layer sandwiched between two thick oxide layers which we call the ionic transistor. We studied this layered membrane for a range of source-drain voltages while keeping the gate (the semiconductor membrane) voltage fixed at a certain value, which was later varied too. We find that for this ionic transistor to be effective in controling the ion fluxes through the nanopore, the gate voltage must be kept relatively large. Another solution could be to increase the surface negative charge on the membrane or to replace the outer oxide layers with the semiconductor material, such as the p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Si material. The developed model can be applied to study ionic filtering and separation properties of membranes of different composition and nanopore geometries.
引用
收藏
页码:818 / 825
页数:7
相关论文
共 50 条
  • [41] ON THE EQUILIBRIUM OF THE POISSON-NERNST-PLANCK-BIKERMANN MODEL EQUIPPING WITH THE STERIC AND CORRELATION EFFECTS
    Liu, Jian-Guo
    Tang, Yijia
    Zhao, Yu
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (02) : 485 - 515
  • [42] MODIFIED POISSON-NERNST-PLANCK MODEL WITH COULOMB AND HARD-SPHERE CORRELATIONS
    Ma, Manman
    Xu, Zhenli
    Zhang, Liwei
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2021, 81 (04) : 1645 - 1667
  • [43] Parallel simulation of the POISSON–NERNST–PLANCK corrosion model with an algebraic flux correction method
    Shariati, Mohamadreza
    Weber, Wolfgang E.
    Höche, Daniel
    Finite Elements in Analysis and Design, 2022, 206
  • [44] Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels
    Liu, Jinn-Liang
    Eisenberg, Bob
    PHYSICAL REVIEW E, 2015, 92 (01):
  • [45] Comparison of two generation-recombination terms in the Poisson-Nernst-Planck model
    Lelidis, I.
    Barbero, G.
    Sfarna, A.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (15):
  • [46] Fractional Poisson–Nernst–Planck Model for Ion Channels I: Basic Formulations and Algorithms
    Duan Chen
    Bulletin of Mathematical Biology, 2017, 79 : 2696 - 2726
  • [47] Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model
    Schuss, Z
    Nadler, B
    Eisenberg, RS
    PHYSICAL REVIEW E, 2001, 64 (03): : 14
  • [48] Poisson-Nernst -Planck model of ion current rectification through a nanofluidic diode
    Constantin, Dragos
    Siwy, Zuzanna S.
    PHYSICAL REVIEW E, 2007, 76 (04):
  • [49] The model reduction of the Vlasov-Poisson-Fokker-Planck system to the Poisson-Nernst-Planck system via the Deep Neural Network Approach
    Lee, Jae Yong
    Jang, Jin Woo
    Hwang, Hyung Ju
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (05) : 1803 - 1846
  • [50] A perspective on streaming current in silica nanofluidic channels: Poisson-Boltzmann model versus Poisson-Nernst-Planck model
    Chang, Chih-Chang
    Yang, Ruey-Jen
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2009, 339 (02) : 517 - 520