Poisson–Nernst–Planck model for an ionic transistor based on a semiconductor membrane

被引:0
|
作者
Alexey Nikolaev
Maria E. Gracheva
机构
[1] Clarkson University,Department of Physics
来源
关键词
Nanopore; Semiconductor membrane; Poisson–Nernst–Planck model; Ion flux; Computations; Nanotechnology;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we developed a Poisson–Nernst–Planck model of an ionic current flowing through a nanopore in a layered solid-state membrane made of a single highly-doped n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-Si layer sandwiched between two thick oxide layers which we call the ionic transistor. We studied this layered membrane for a range of source-drain voltages while keeping the gate (the semiconductor membrane) voltage fixed at a certain value, which was later varied too. We find that for this ionic transistor to be effective in controling the ion fluxes through the nanopore, the gate voltage must be kept relatively large. Another solution could be to increase the surface negative charge on the membrane or to replace the outer oxide layers with the semiconductor material, such as the p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Si material. The developed model can be applied to study ionic filtering and separation properties of membranes of different composition and nanopore geometries.
引用
收藏
页码:818 / 825
页数:7
相关论文
共 50 条
  • [31] A Poisson-Nernst-Planck Model of Ion Transport and Interface Segregation in Metal-Insulator-Semiconductor Structures and Solar Cells
    Martinez Loran, Erick
    von Gastrow, Guillaume
    Clenney, Jacob
    Contreras-Torres, Flavio F.
    Meier, Rico
    Bertoni, Mariana I.
    Bandaru, Prabhakar
    Fenning, David P.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (03):
  • [32] Computer simulations of electrodiffusion problems based on Nernst-Planck and Poisson equations
    Jasielec, J. J.
    Filipek, R.
    Szyszkiewicz, K.
    Fausek, J.
    Danielewski, M.
    Lewenstam, A.
    COMPUTATIONAL MATERIALS SCIENCE, 2012, 63 : 75 - 90
  • [33] Numerical Aspects of Electrodiffusion Problem Based on Nernst-Planck and Poisson Equations
    Fausek, Janusz
    Szyszkiewicz, Krzysztof
    Filipek, R.
    DIFFUSION IN MATERIALS - DIMAT 2011, 2012, 323-325 : 81 - 86
  • [34] A 3-D finite element Poisson-Nernst-Planck model for the analysis of ion transport across ionic channels
    Coco, Salvatore
    Gazzo, Daniela
    Laudani, Antonino
    Pollicino, Giuseppe
    IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (04) : 1461 - 1464
  • [35] A computational simulation of electromembrane extraction based on Poisson-Nernst-Planck equations
    Dolatabadi, Roshanak
    Mohammadi, Ali
    Baghani, Mostafa
    ANALYTICA CHIMICA ACTA, 2021, 1158
  • [36] Comparison of the Nernst-Planck model and the Poisson-Boltzmann model for electroosmotic flows in microchannels
    Park, H. M.
    Lee, J. S.
    Kim, T. W.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 315 (02) : 731 - 739
  • [37] Decoupling of the Nernst-Planck and Poisson equations. Application to a membrane system at overlimiting currents
    Urtenov, Mahamet A. -Kh.
    Kirillova, Evgeniya V.
    Seidova, Natalia M.
    Nikonenko, Victor V.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (51): : 14208 - 14222
  • [38] Extended Poisson-Nernst-Planck modeling of membrane blockage via insoluble reaction products
    McNealy, Benjamin E.
    Hertz, Joshua L.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2014, 52 (02) : 430 - 440
  • [39] A survey on properties of Nernst-Planck-Poisson system. Application to ionic transport in porous media
    Gagneux, Gerard
    Millet, Olivier
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (02) : 846 - 858
  • [40] MODIFIED POISSON-NERNST-PLANCK MODEL WITH ACCURATE COULOMB CORRELATION IN VARIABLE MEDIA
    Liu, Pei
    Ji, Xia
    Xu, Zhenli
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (01) : 226 - 245