Poisson–Nernst–Planck model for an ionic transistor based on a semiconductor membrane

被引:0
|
作者
Alexey Nikolaev
Maria E. Gracheva
机构
[1] Clarkson University,Department of Physics
来源
关键词
Nanopore; Semiconductor membrane; Poisson–Nernst–Planck model; Ion flux; Computations; Nanotechnology;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we developed a Poisson–Nernst–Planck model of an ionic current flowing through a nanopore in a layered solid-state membrane made of a single highly-doped n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-Si layer sandwiched between two thick oxide layers which we call the ionic transistor. We studied this layered membrane for a range of source-drain voltages while keeping the gate (the semiconductor membrane) voltage fixed at a certain value, which was later varied too. We find that for this ionic transistor to be effective in controling the ion fluxes through the nanopore, the gate voltage must be kept relatively large. Another solution could be to increase the surface negative charge on the membrane or to replace the outer oxide layers with the semiconductor material, such as the p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Si material. The developed model can be applied to study ionic filtering and separation properties of membranes of different composition and nanopore geometries.
引用
收藏
页码:818 / 825
页数:7
相关论文
共 50 条
  • [21] Effects of Large Permanent Charges on Ionic Flows via Poisson-Nernst-Planck Models
    Zhang, Liwei
    Liu, Weishi
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (03): : 1993 - 2029
  • [22] Nernst-Planck/Poisson model for the potential response of permselective gold nanopores
    Makra, Istvan
    Jagerszki, Gyula
    Bitter, Istvan
    Gyurcsanyi, Robert E.
    ELECTROCHIMICA ACTA, 2012, 73 : 70 - 77
  • [23] Fractional Calculus in Electrical Impedance Spectroscopy: Poisson - Nernst - Planck model and Extensions
    Lenzi, E. K.
    Ribeiro, H. V.
    Zola, R. S.
    Evangelista, L. R.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (12): : 11677 - 11691
  • [24] ION SIZE AND VALENCE EFFECTS ON IONIC FLOWS VIA POISSON-NERNST-PLANCK MODELS
    Bates, Peter W.
    Liu, Weishi
    Lu, Hong
    Zhang, Mingji
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (04) : 881 - 901
  • [25] Frequency-Dependent Dielectric Permittivity in Poisson-Nernst-Planck Model
    Rosseto, M. P.
    Evangelista, L. R.
    Lenzi, E. K.
    Zola, R. S.
    de Almeida, R. R. Ribeiro
    JOURNAL OF PHYSICAL CHEMISTRY B, 2022, 126 (34): : 6446 - 6453
  • [26] Entropy method for generalized Poisson–Nernst–Planck equations
    José Rodrigo González Granada
    Victor A. Kovtunenko
    Analysis and Mathematical Physics, 2018, 8 : 603 - 619
  • [27] Decomposition of Nernst-Planck-Poisson equation systems
    Babeshko, VA
    Zabolotskii, VI
    Kirillova, EV
    Urtenov, MK
    DOKLADY AKADEMII NAUK, 1995, 344 (04) : 485 - 486
  • [28] Convergent discretizations for the Nernst-Planck-Poisson system
    Prohl, Andreas
    Schmuck, Markus
    NUMERISCHE MATHEMATIK, 2009, 111 (04) : 591 - 630
  • [29] Numerical analysis of the Nernst-Planck-Poisson system
    Kato, M
    JOURNAL OF THEORETICAL BIOLOGY, 1995, 177 (03) : 299 - 304
  • [30] A multigrid method for the Poisson-Nernst-Planck equations
    Mathur, Sanjay R.
    Murthy, Jayathi Y.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (17-18) : 4031 - 4039