Poisson–Nernst–Planck model for an ionic transistor based on a semiconductor membrane

被引:0
|
作者
Alexey Nikolaev
Maria E. Gracheva
机构
[1] Clarkson University,Department of Physics
来源
关键词
Nanopore; Semiconductor membrane; Poisson–Nernst–Planck model; Ion flux; Computations; Nanotechnology;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we developed a Poisson–Nernst–Planck model of an ionic current flowing through a nanopore in a layered solid-state membrane made of a single highly-doped n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-Si layer sandwiched between two thick oxide layers which we call the ionic transistor. We studied this layered membrane for a range of source-drain voltages while keeping the gate (the semiconductor membrane) voltage fixed at a certain value, which was later varied too. We find that for this ionic transistor to be effective in controling the ion fluxes through the nanopore, the gate voltage must be kept relatively large. Another solution could be to increase the surface negative charge on the membrane or to replace the outer oxide layers with the semiconductor material, such as the p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Si material. The developed model can be applied to study ionic filtering and separation properties of membranes of different composition and nanopore geometries.
引用
收藏
页码:818 / 825
页数:7
相关论文
共 50 条
  • [1] Poisson-Nernst-Planck model for an ionic transistor based on a semiconductor membrane
    Nikolaev, Alexey
    Gracheva, Maria E.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (04) : 818 - 825
  • [2] A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow
    Liu, Weishi
    Xu, Hongguo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (04) : 1192 - 1228
  • [3] Poisson-Boltzmann-Nernst-Planck model
    Zheng, Qiong
    Wei, Guo-Wei
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (19):
  • [4] A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores
    Cervera, J
    Schiedt, B
    Ramírez, P
    EUROPHYSICS LETTERS, 2005, 71 (01): : 35 - 41
  • [5] Solutions to a nonlinear Poisson-Nernst-Planck system in an ionic channel
    Hadjadj, L.
    Hamdache, K.
    Hamroun, D.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (15) : 1794 - 1806
  • [6] POISSON-NERNST-PLANCK (PNP) THEORY OF AN OPEN IONIC CHANNEL
    EISENBERG, R
    CHEN, DP
    BIOPHYSICAL JOURNAL, 1993, 64 (02) : A22 - A22
  • [7] Ion flux through membrane channels - An enhanced algorithm for the Poisson-Nernst-Planck model
    Dyrka, Witold
    Augousti, Andy T.
    Kotulska, Malgorzata
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2008, 29 (12) : 1876 - 1888
  • [8] EXISTENCE THEORY FOR A POISSON-NERNST-PLANCK MODEL OF ELECTROPHORESIS
    Bedin, Luciano
    Thompson, Mark
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (01) : 157 - 206
  • [9] Modeling the Transient Behavior of Ionic Diodes with the Nernst-Planck-Poisson Equations
    Tepermeister, Max
    Silberstein, Meredith N.
    ADVANCED SENSOR RESEARCH, 2024, 3 (04):
  • [10] Poisson-Nernst-Planck framework for modelling ionic strain and temperature sensors
    Balakrishnan, Gaurav
    Song, Jiwoo
    Khair, Aditya S.
    Bettinger, Christopher J.
    JOURNAL OF MATERIALS CHEMISTRY B, 2023, 11 (24) : 5544 - 5551