Quotient groups of locally graded groups and groups of certain Kurosh-Chernikov classes

被引:0
作者
N. S. Chernikov
D. Ya. Trebenko
机构
[1] Ukrainian Academy of Sciences,Institute of Mathematics
[2] National Pedagogic University,undefined
关键词
Abelian Group; Minimality Condition; Quotient Group; Normal System; Solvable Group;
D O I
10.1007/BF02524483
中图分类号
学科分类号
摘要
We establish the validity of the inclusion G/N∈X for groups G ∈X under certain restrictions on N ⊴ G, where X is one of the following classes, the class of locally graded groups, the class of RI-groups, or the class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\hat P\mathfrak{Y}$$ \end{document} for a fixed group variety \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{Y} \supseteq \mathfrak{A}$$ \end{document}.
引用
收藏
页码:1765 / 1773
页数:8
相关论文
共 3 条
[1]  
Zel’manov E. I.(1990)Solution of the weakened Burnside problem for groups of odd degree Izv Akad. Nauk SSSR, Ser. Mat. 54 42-59
[2]  
Zel’manov E. I.(1991)Solution of the weakened Burnside problem for 2-groups Mat. Sb. 182 568-592
[3]  
Chernikov S. N.(1951)On locally solvable groups satisfying the minimality condition for subgroups Mat. Sb. 28 119-129