Ultrafast imaging of terahertz electric waveforms using quantum dots

被引:0
|
作者
Moritz B. Heindl
Nicholas Kirkwood
Tobias Lauster
Julia A. Lang
Markus Retsch
Paul Mulvaney
Georg Herink
机构
[1] Experimental Physics VIII – Ultrafast Dynamics,
[2] University of Bayreuth,undefined
[3] ARC Centre of Excellence in Exciton Science,undefined
[4] School of Chemistry,undefined
[5] University of Melbourne,undefined
[6] Physical Chemistry I,undefined
[7] University of Bayreuth,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Microscopic electric fields govern the majority of elementary excitations in condensed matter and drive electronics at frequencies approaching the Terahertz (THz) regime. However, only few imaging schemes are able to resolve sub-wavelength fields in the THz range, such as scanning-probe techniques, electro-optic sampling, and ultrafast electron microscopy. Still, intrinsic constraints on sample geometry, acquisition speed and field strength limit their applicability. Here, we harness the quantum-confined Stark-effect to encode ultrafast electric near-fields into colloidal quantum dot luminescence. Our approach, termed Quantum-probe Field Microscopy (QFIM), combines far-field imaging of visible photons with phase-resolved sampling of electric waveforms. By capturing ultrafast movies, we spatio-temporally resolve a Terahertz resonance inside a bowtie antenna and unveil the propagation of a Terahertz waveguide excitation deeply in the sub-wavelength regime. The demonstrated QFIM approach is compatible with strong-field excitation and sub-micrometer resolution—introducing a direct route towards ultrafast field imaging of complex nanodevices in-operando.
引用
收藏
相关论文
共 50 条
  • [11] Quantum dots for terahertz devices
    Liu, H. C.
    Aslan, B.
    Gupta, J. A.
    Wasilewski, Z. R.
    Aers, G. C.
    SpringThorpe, A. J.
    Buchanan, A.
    TERAHERTZ PHOTONICS, 2008, 6840
  • [12] Ultrafast snapshots of terahertz electric potentials across ring-shaped quantum barriers
    Kang, Taehee
    Kim, Richard H. J.
    Lee, Jinwoo
    Seo, Minah
    Kim, Dai-Sik
    NANOPHOTONICS, 2024, 13 (08) : 1331 - 1338
  • [13] Quantum computing using applied electric field to quantum dots
    Meighan, A.
    Rostami, A.
    Abbasian, K.
    ADVANCES IN NANO RESEARCH, 2014, 2 (01) : 15 - 22
  • [14] Broadband terahertz absorber using superimposed graphene quantum dots
    Deljoo, H.
    Rostami, A.
    OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (08)
  • [15] Broadband terahertz absorber using superimposed graphene quantum dots
    H. Deljoo
    A. Rostami
    Optical and Quantum Electronics, 2021, 53
  • [16] Using quantum dots to produce a CMOS terahertz camera and polarimeter
    Nature Nanotechnology, 2022, 17 : 1247 - 1248
  • [17] Using quantum dots to produce a CMOS terahertz camera and polarimeter
    Oh, Sang-Hyun
    Nelson, Keith A.
    NATURE NANOTECHNOLOGY, 2022, 17 (12) : 1247 - 1247
  • [18] Ultrafast energy relaxation in quantum dots
    Woggon, U
    Giessen, H
    Gindele, F
    Wind, O
    Fluegel, B
    Peyghambarian, N
    PHYSICAL REVIEW B, 1996, 54 (24): : 17681 - 17690
  • [19] Localization imaging using blinking quantum dots
    Chien, Fan-Ching
    Kuo, Chiung Wen
    Chen, Peilin
    ANALYST, 2011, 136 (08) : 1608 - 1613
  • [20] Intravital imaging in zebrafish using quantum dots
    Son, Sang Wook
    Kim, Jae Hwan
    Kim, Su Hyun
    Kim, Ho
    Chung, Ah-Young
    Choo, Jae Bum
    Oh, Chil Hwan
    Park, Hae-Chul
    SKIN RESEARCH AND TECHNOLOGY, 2009, 15 (02) : 157 - 160