Isospin constraints from/on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B \to \pi\pi$\end{document}

被引:0
作者
M. Pivk
F. R. Le Diberder
机构
[1] CERN,PH
[2] IN2P3-CNRS et Université de Paris-Sud,EP Department
关键词
Field Theory; Elementary Particle; Quantum Field Theory; Close Form; Particle Acceleration;
D O I
10.1140/epjc/s2005-02119-y
中图分类号
学科分类号
摘要
The Standard Model constraints on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document} which can be derived from the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B\rightarrow\pi\pi$\end{document} decays are revisited in some depth. As experimental inputs, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^0\rightarrow\pi^ + \pi^-$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^ + \rightarrow\pi^ + \pi^0$\end{document} decays complemented by the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B^0\rightarrow\pi^0\pi^0$\end{document} decays, the CP parameters \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\pi\pi}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C_{\pi\pi}$\end{document}, and/or the value of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document} as determined by the global CKM fit are used. The constraints discussed here are model independent in the sense that they rely only on Isospin symmetry, following the Gronau-London proposal. A new bound on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{B}^{00}$\end{document} and the function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C_{00}(\mathcal{B}^{00})$\end{document} are introduced. While another bound applied to BABAR results is shown to imply that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\cos(2\alpha_{\rm eff})$\end{document} is negative. The Grossman-Quinn bound is rediscussed. A close form expression is given for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document} as a function of the measurements. Various scenarios for the future of the isospin analysis are explored. To probe the Standard Model the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathcal{B}^{00},C_{00})$\end{document} plane is introduced.
引用
收藏
页码:397 / 409
页数:12
相关论文
共 15 条
  • [1] Gronau M.(1990)undefined Phys. Rev. Lett. 65 3381-undefined
  • [2] Ali D.(2004)undefined Eur. Phys. J. C 36 183-undefined
  • [3] Collaboration N.(2002)undefined Phys. Rev. Lett. 89 281802-undefined
  • [4] Collaboration R.(2003)undefined Phys. Rev. Lett. 91 021801-undefined
  • [5] Collaboration undefined(2003)undefined Phys. Rev. Lett. 91 241801-undefined
  • [6] Collaboration undefined(2004)undefined Phys. Rev. D 69 111102-undefined
  • [7] Collaboration undefined(2004)undefined Phys. Rev.Lett. 93 021601-undefined
  • [8] Collaboration undefined(2003)undefined Phys. Rev. D 68 052002-undefined
  • [9] Group undefined(2002)undefined Phys. Rev. D 66 010001-undefined
  • [10] Grossman undefined(1998)undefined Phys. Rev. D 58 017504-undefined