Multivariate tempered stable additive subordination for financial models

被引:0
作者
Patrizia Semeraro
机构
[1] Politecnico di Torino,Department of Mathematical Science
来源
Mathematics and Financial Economics | 2022年 / 16卷
关键词
Tempered stable distributions; Sato processes; Multivariate additive subordination; Multivariate asset modeling; 60G51; 60E07;
D O I
暂无
中图分类号
学科分类号
摘要
We study a class of multivariate tempered stable distributions and introduce the associated class of tempered stable Sato subordinators. These Sato subordinators are used to build additive inhomogeneous processes by subordination of a multiparameter Brownian motion. The resulting process is additive and time inhomogeneous and it is a generalization of multivariate Lévy processes with good fit properties on financial data. We specify the model to have unit time normal inverse Gaussian distribution and we discuss the ability of the model to fit time inhomogeneous correlations on real data.
引用
收藏
页码:685 / 712
页数:27
相关论文
共 65 条
[21]  
Egorov AV(2009)A generalized normal mean-variance mixture for return processes in finance Electron. Commun. Probab. 14 358-175
[22]  
Li H(2018)Multivariate time changes for Lévy asset models: Characterization and calibration International Journal of Theoretical and Applied Finance 21 1850005-430
[23]  
Xu Y(2016)A note on new classes of infinitely divisible distributions on Math. Financ. 26 699-707
[24]  
Grigelionis B(2014)Multivariate factor-based processes with Sato margins J. Multivar. Anal. 130 155-94
[25]  
Guillaume F(1990)Multivariate subordination of Markov processes with financial applications Ann. Probab. 18 405-2355
[26]  
Guillaume F(2007)Infinitely divisible multivariate and matrix gamma distributions Stochastic Processes and their Applications 117 677-187
[27]  
Jevtić P(1982)On series representations of infinitely divisible random vectors J. Multivar. Anal. 12 89-514
[28]  
Marena M(2020)Tempering stable processes Communications in Statistics-Theory and Methods 49 2339-41
[29]  
Semeraro P(2004)Absolute continuity of multivariate distributions of class l J. Appl. Probab. 41 177-515
[30]  
Kokholm T(2017)A note on the multivariate generalized asymmetric Laplace motion Advances in Applied Probability 49 481-undefined