Singularities in K-space and multi-brane solutions in cubic string field theory

被引:0
作者
Hiroyuki Hata
Toshiko Kojita
机构
[1] Kyoto University,Department of Physics
来源
Journal of High Energy Physics | / 2013卷
关键词
String Field Theory; Tachyon Condensation; D-branes;
D O I
暂无
中图分类号
学科分类号
摘要
In a previous paper [arXiv:1111.2389], we studied the multi-brane solutions in cubic string field theory by focusing on the topological nature of the “winding number” \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} which counts the number of branes. We found that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} can be non-trivial owing to the singularity from the zero-eigenvalue of K of the KBc algebra, and that solutions carrying integer \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} and satisfying the EOM in the strong sense is possible only for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 0, ±1. In this paper, we extend the construction of multi-brane solutions to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \left| \mathcal{N} \right| $\end{document} ≥ 2. The solutions with N =±2ismadepossiblebythefactthatthecorrelatorisinvariantunderatransformation exchanging K with 1/K and hence K = ∞ eigenvalue plays the same role as K = 0. We further propose a method of constructing solutions with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \left| \mathcal{N} \right| $\end{document} ≥ 3 by expressing the eigenvalue space of K as a sum of intervals where the construction for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \left| \mathcal{N} \right| $\end{document} ≤ 2 is applicable.
引用
收藏
相关论文
共 21 条
[11]  
Aldo Arroyo E(2012)The identity string field and the sliver frame level expansion JHEP 11 150-undefined
[12]  
Masuda T(2010)A simple analytic solution for tachyon condensation Theor. Math. Phys. 163 705-undefined
[13]  
Noumi T(2011)Comments on lumps from RG flows JHEP 11 092-undefined
[14]  
Takahashi D(undefined)undefined undefined undefined undefined-undefined
[15]  
Okawa Y(undefined)undefined undefined undefined undefined-undefined
[16]  
Erler T(undefined)undefined undefined undefined undefined-undefined
[17]  
Schnabl M(undefined)undefined undefined undefined undefined-undefined
[18]  
Erler T(undefined)undefined undefined undefined undefined-undefined
[19]  
Erler T(undefined)undefined undefined undefined undefined-undefined
[20]  
Erler T(undefined)undefined undefined undefined undefined-undefined