Singularities in K-space and multi-brane solutions in cubic string field theory

被引:0
作者
Hiroyuki Hata
Toshiko Kojita
机构
[1] Kyoto University,Department of Physics
来源
Journal of High Energy Physics | / 2013卷
关键词
String Field Theory; Tachyon Condensation; D-branes;
D O I
暂无
中图分类号
学科分类号
摘要
In a previous paper [arXiv:1111.2389], we studied the multi-brane solutions in cubic string field theory by focusing on the topological nature of the “winding number” \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} which counts the number of branes. We found that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} can be non-trivial owing to the singularity from the zero-eigenvalue of K of the KBc algebra, and that solutions carrying integer \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} and satisfying the EOM in the strong sense is possible only for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 0, ±1. In this paper, we extend the construction of multi-brane solutions to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \left| \mathcal{N} \right| $\end{document} ≥ 2. The solutions with N =±2ismadepossiblebythefactthatthecorrelatorisinvariantunderatransformation exchanging K with 1/K and hence K = ∞ eigenvalue plays the same role as K = 0. We further propose a method of constructing solutions with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \left| \mathcal{N} \right| $\end{document} ≥ 3 by expressing the eigenvalue space of K as a sum of intervals where the construction for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \left| \mathcal{N} \right| $\end{document} ≤ 2 is applicable.
引用
收藏
相关论文
共 21 条
[1]  
Witten E(1986)Noncommutative geometry and string field theory Nucl. Phys. B 268 253-undefined
[2]  
Murata M(2011)On multibrane solutions in open string field theory Prog. Theor. Phys. Suppl. 188 50-undefined
[3]  
Schnabl M(2011)The boundary state for a class of analytic solutions in open string field theory JHEP 11 054-undefined
[4]  
Takahashi D(2012)Winding number in string field theory JHEP 01 088-undefined
[5]  
Hata H(2012)Multibrane solutions in open string field theory JHEP 07 063-undefined
[6]  
Kojita T(2012)Connecting solutions in open string field theory with singular gauge transformations JHEP 04 107-undefined
[7]  
Murata M(2012)Multibrane solutions in cubic superstring field theory JHEP 06 157-undefined
[8]  
Schnabl M(2012)Constraints on a class of classical solutions in open string field theory JHEP 10 113-undefined
[9]  
Erler T(2006)Comments on Schnabl’s analytic solution for tachyon condensation in Witten’s open string field theory JHEP 04 055-undefined
[10]  
Maccaferri C(2009)A simple analytic solution for tachyon condensation JHEP 10 066-undefined