Characterization of a class of surfaces with pg = 0 and K2 = 5 by their bicanonical maps

被引:0
作者
Lei Zhang
机构
[1] Peking University,School of Mathematics Sciences
来源
Manuscripta Mathematica | 2011年 / 135卷
关键词
14J10; 14J29;
D O I
暂无
中图分类号
学科分类号
摘要
Let S be a minimal surface of general type with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p_g(S) = 0, K_S^2 = 5}$$\end{document} . We prove that S is a Burniat surface if its bicanonical map is of degree 4 and has smooth image.
引用
收藏
页码:165 / 181
页数:16
相关论文
共 19 条
  • [1] Bauer I.(2010)Burniat surfaces II: secondary Burniat surfaces form three connected components of the moduli space Invent. Math. 180 C559-C588
  • [2] Catanese F.(1966)Sur les surfaces de genre Ann. Mat. Pura Appl. IV Ser. 71 1-24
  • [3] Burniat P.(1999) > 0 A.M.S. Contemp. Math. 241 97-120
  • [4] Catanese F.(1997)Singular bidouble covers and the construction of interesting algebraic surfaces, in Algebraic Geometry: Hirzebruch 70 Arch. Math. 69 435-440
  • [5] Mendes Lopes M.(2001)The degree of the generators of the canonical ring of surfaces of general type with Topology 40 977-991
  • [6] Mendes Lopes M.(2001) = 0 Bull. Lond. Math. Soc. 33 337-343
  • [7] Pardini R.(2004)A connected component of the moduli space of surfaces of general type with Math. Ann. 329 535-552
  • [8] Mendes Lopes M.(2007) = 0 Proc. Am. Math. Soc. 135 1279-1282
  • [9] Pardini R.(1973)The bicanonical map of surfaces with Math. Ann. 268 159-171
  • [10] Mendes Lopes M.(1991) = 0 and J. Reine Angew. Math. 417 191-213