Lie symmetry analysis and invariant solutions of (3+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{(3+1)}$$\end{document}-dimensional Calogero–Bogoyavlenskii–Schiff equation

被引:0
作者
Vishakha Jadaun
Sachin Kumar
机构
[1] University of Delhi,Department of Mathematics, Faculty of Mathematical Sciences
关键词
-Dimensional Calogero–Bogoyavlenskii–Schiff; Lie symmetries; Similarity transformations method; Generators of infinitesimal transformations; Similarity solutions;
D O I
10.1007/s11071-018-4196-z
中图分类号
学科分类号
摘要
Lie group analysis is applied to carry out the similarity reductions of the (3+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3+1)$$\end{document}-dimensional Calogero–Bogoyavlenskii–Schiff (CBS) equation. We obtain generators of infinitesimal transformations of the CBS equation and each of these generators depend on various parameters which give us a set of Lie algebras. For each of these Lie algebras, Lie symmetry method reduces the (3+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3+1)$$\end{document}-dimensional CBS equation into a new (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+1)$$\end{document}-dimensional partial differential equation and to an ordinary differential equation. In addition, we obtain commutator table of Lie brackets and symmetry groups for the CBS equation. Finally, we obtain closed-form solutions of the CBS equation by using the invariance property of Lie group transformations.
引用
收藏
页码:349 / 360
页数:11
相关论文
共 27 条
[1]  
He JH(2006)Exp-function method for nonlinear wave equations Chaos Solitons Fractals 30 700-708
[2]  
Wu XH(2008)The Phys. Lett. A 372 417-423
[3]  
Wang M(2017)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics Nonlinear Dyn. 87 1995-2000
[4]  
Li X(2013)Lie symmetry analysis for similarity reduction and exact solutions of modified KdV–Zakharov–Kuznetsov equation Appl. Math. Lett. 26 376-381
[5]  
Zhang J(2016)Symmetry reduction, exact group-invariant solutions and conservation laws of the Benjamin–Bona–Mahoney equation Chaos Solitons Fractals 86 8-15
[6]  
Sahoo S(2015)Group analysis, exact solutions and conservation laws of a generalized fifth order KdV equation Nonlinear Dyn. 81 1569-1574
[7]  
Garai G(2000)Fractional Lie group method of the time-fractional Boussinesq equation J. Math. Phys. 41 4747-4751
[8]  
Saha Ray S(2016)The investigation into the Schwarz–Korteweg–de Vries equation and the Schwarz derivative in Nonlinear Dyn. 85 1665-1677
[9]  
Johnpillai AG(2012) dimensions Nonlinear Anal. 75 2256-2261
[10]  
Kara AH(2008)Some singular solutions and their limit forms for generalized Calogero–Bogoyavlenskii–Schiff equation Appl. Math. Comput. 203 592-597