α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Bernstein-Integral Type Operators

被引:0
作者
Jyoti Yadav
Syed Abdul Mohiuddine
Arun Kajla
Abdullah Alotaibi
机构
[1] Central University of Haryana,School of Basic Sciences
[2] King Abdulaziz University,Department of General Required Courses, Mathematics, The Applied College
[3] King Abdulaziz University,Operator Theory and Applications Research Group, Department of Mathematics, Faculty of Science
关键词
-Bernstein operators; Local approximation; Voronovskaja-type theorem; 41A36; 41A25; 26A15;
D O I
10.1007/s41980-023-00806-3
中图分类号
学科分类号
摘要
The aim of this article is to present modified α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-summation-integral type operators based on a strictly positive continuous function. The rate as per instruction of approximation in terms of modulus of continuity and Voronovskaja-type asymptotic formulas are studied. Finally, we use Maple software to show the convergence of the operators to a certain function.
引用
收藏
相关论文
共 55 条
[1]  
Acar T(2016)Quantitative q-Voronovskaya and q-Grüss-Voronovskaya-type results for q-Szasz operators Georgian Math. J. 23 459-468
[2]  
Acar T(2016)The new forms of Voronovskaya’s theorem in weighted spaces Positivity 20 25-40
[3]  
Aral A(2016)Approximation properties of Lupaş-Kantorovich operators based on Pólya distribution Rend. Circ. Mat. Palermo 65 185-208
[4]  
Raşa I(2015)Approximation properties of Bezier-summation-integral type operators based on Pólya-Bernstein functions Appl. Math. Comput. 259 533-539
[5]  
Agrawal PN(2016)GBS operators of Lupaş-Durrmeyer type based on Pólya distribution Results Math. 69 397-418
[6]  
Ispir N(2017)Approximation of functions by a new family of generalized Bernstein operators J. Math. Anal. Appl. 450 244-261
[7]  
Kajla A(2002)On approximation properties of Stancu’s operators, Studia Univ Babeş-Bolyai, Mathematica XLVII No. 4 47-55
[8]  
Agrawal PN(2023)Semi Post-Widder Operators and Difference Estimates Bull. Iran. Math. Soc. 49 18-329
[9]  
Ispir N(2015)Rate of convergence of Lupaş Kantorovich operators based on Pólya distribution Appl. Math. Comput. 261 323-582
[10]  
Kajla A(2019)Modified Ann. Funct. Anal. 10 570-336