The Entanglement Properties of Superposition of Fermionic Coherent States

被引:0
作者
M. Alimoradi Chamgordani
机构
[1] Shahid Chamran University of Ahvaz,
来源
International Journal of Theoretical Physics | 2022年 / 61卷
关键词
Fermionic coherent states; Entanglement; I-concurrence; D-concurrence;
D O I
暂无
中图分类号
学科分类号
摘要
The entanglement properties of pure two-partite quantum systems, constructed from fermionic spin coherent states, is investigated for particles of j=12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ j=\frac{1}{2} $$\end{document}, 32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{3}{2} $$\end{document} and52\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{5}{2} $$\end{document}spins. The results show that entanglement of superposition of two-partite fermionic coherent states (SFCS) increases as j is increased. The amount of the entanglement is measured by I-Concurrence and D-Concurrence. Depending on coherent parameters, it is concluded that the maximal entanglement or no entanglement at all is reached for both entanglement measures IC and DC. We illustrated that by augmenting the spin of the fermionic coherent states (j) and, consequently, increasing their dimension d = 2 j + 1, the entanglement of the SFCS states sharply rises to its maximum value around the cartesian origin and then will decline to its minimum value mildly. Our results indicate no entanglement sudden death phenomenon under the examined conditions.
引用
收藏
相关论文
共 126 条
[1]  
Ekert AK(1991)Quantum cryptography based on Bell’s theorem Phys. Rev. Lett. 67 661-663
[2]  
Bennett CH(1993)Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels Phys. Rev. Lett. 70 1895-1899
[3]  
Brassard G(1992)Quantum cryptography without Bell’s theorem Phys. Rev. Lett. 68 557-559
[4]  
Crépeau C(1996)Quantum computation and Shor's factoring algorithm Rev. Mod. Phys. 68 733-753
[5]  
Jozsa R(2001)Entangled coherent states: Teleportation and decoherence Phys. Rev. A 64 022313-1334
[6]  
Peres A(2018)Entanglement Increase in Higher Dimensions Int. J. Innov. Technol. Manag. 7 0702107-2539
[7]  
Wootters WK(2018)The Quantum Theory of Optical Coherence Int. J. Innov. Technol. Manag. 7 2319-236
[8]  
Bennett CH(1963)Coherent states for arbitrary Lie group Phys. Rev. 130 2529-143
[9]  
Brassard G(1972)Autocorrelation function of microcavity-emitting field in the linear regime Commun. Math. Phys. 26 222-395
[10]  
Mermin ND(2008)Noise spectra of microcavity-emitting field in the linear regime Eur. Phys. J. D. 48 139-1729