Resistance metrology based on the quantum Hall effect

被引:1
|
作者
W. Poirier
F. Schopfer
机构
[1] Quantum Metrology Group,
[2] Laboratoire National de Métrologie et d’Essais,undefined
关键词
European Physical Journal Special Topic; Landau Level; Edge State; Fundamental Constant; Equipotential Line;
D O I
暂无
中图分类号
学科分类号
摘要
The Quantum Hall effect (QHE), a macroscopic effect of solid state physics, provides a universal representation of the unit of resistance which depends on the elementary charge e and the Planck constant h only. If implemented according to specific technical guidelines, the quantum resistance standard can be reproduced with a relative uncertainty below one part in 109. Calibrations of wire resistors in terms of the QHE can be carried out with similarly low uncertainties by using resistance bridges equipped with cryogenic current comparators, the performance of which relies on the magnetic flux sensitivity of superconducting quantum interference devices (SQUID). Using a special connection technique, the fundamental properties of the QHE allow the fabrication of arrays combining a large number of single Hall bars connected in series or in parallel and which demonstrate quantum accuracy. Similar to the case of voltage metrology with Josephson array voltage standards, an improvement of resistance metrology is expected from the availability of quantum Hall array resistance standards (QHARS). The QHE Wheatstone bridge, which is another application of the same connection technique, opens the way to new universality tests of the QHE with a relative uncertainty below one part in 1011. At frequencies in the kilohertz range, the recent progress in the application of coaxial bridges to the QHE allows metrologists to operate a quantum resistance standard with alternating current reaching an accuracy of some parts in 108. Finally, the discovery of the QHE in graphene opens new horizons for the resistance metrology.
引用
收藏
页码:207 / 245
页数:38
相关论文
共 50 条
  • [1] Resistance metrology based on the quantum Hall effect
    Poirier, W.
    Schopfer, F.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 172 : 207 - 245
  • [2] Application of the quantum Hall effect to resistance metrology
    Poirier, Wilfrid
    Schopfer, Felicien
    Guignard, Jeremie
    Thevenot, Olivier
    Gournay, Pierre
    COMPTES RENDUS PHYSIQUE, 2011, 12 (04) : 347 - 368
  • [3] The resistance standard based on the Quantum Hall Effect at Slovak Institute of Metrology
    Gálik, M
    2002 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS, CONFERENCE DIGEST, 2002, : 244 - 245
  • [4] Graphene-based quantum Hall effect metrology
    Schopfer, Felicien
    Poirier, Wilfrid
    MRS BULLETIN, 2012, 37 (12) : 1255 - 1264
  • [5] Graphene-based quantum Hall effect metrology
    Félicien Schopfer
    Wilfrid Poirier
    MRS Bulletin, 2012, 37 : 1255 - 1264
  • [6] Graphene quantum Hall effect devices for AC and DC resistance metrology
    Kruskopf, Mattias
    Patel, Dinesh K.
    Liu, Chieh-, I
    Rigosi, Albert F.
    Elmquist, Randolph E.
    Wang, Yicheng
    Bauer, Stephan
    Yin, Yefei
    Pierz, Klaus
    Pesel, Eckard
    Goetz, Martin
    Schurr, Juergen
    2020 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS (CPEM), 2020,
  • [7] Recent advances in quantum Hall resistance metrology
    Inglis, D
    METROLOGY - AT THE THRESHOLD OF THE CENTURY ARE WE READY?, 1999, : 199 - 208
  • [8] QUANTUM HALL EFFECT AND OHM METROLOGY
    Poirier, W.
    Schopfer, F.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (12-13): : 2779 - 2789
  • [9] Quantum Hall Effect and Metrology Foreword
    Glattli, Christian
    COMPTES RENDUS PHYSIQUE, 2011, 12 (04) : 319 - 322
  • [10] Quantum anomalous Hall effect for metrology
    Huang, Nathaniel J.
    Boland, Jessica L.
    Fijalkowski, Kajetan M.
    Gould, Charles
    Hesjedal, Thorsten
    Kazakova, Olga
    Kumar, Susmit
    Scherer, Hansjoerg
    APPLIED PHYSICS LETTERS, 2025, 126 (04)