Graphical Representations of Graphic Frame Matroids

被引:0
作者
Rong Chen
Matthew DeVos
Daryl Funk
Irene Pivotto
机构
[1] Fuzhou University,Center for Discrete Mathematics
[2] Simon Fraser University,Department of Mathematics
[3] University of Western Australia,School of Mathematics and Statistics
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Biased graphs; Graphical representations; Frame matroids; 05C22; 52B40;
D O I
暂无
中图分类号
学科分类号
摘要
A frame matroid M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document} is graphic if there is a graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} with cycle matroid isomorphic to M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}. In general, if there is one such graph, there will be many. Zaslavsky has shown that frame matroids are precisely those having a representation as a biased graph; this class includes graphic matroids, bicircular matroids, and Dowling geometries. Whitney characterized which graphs have isomorphic cycle matroids, and Matthews characterized which graphs have isomorphic graphic bicircular matroids. In this paper, we give a characterization of which biased graphs give rise to isomorphic graphic frame matroids.
引用
收藏
页码:2075 / 2086
页数:11
相关论文
共 10 条
[1]  
Dowling TA(1973)A class of geometric lattices based on finite groups J. Comb. Theory Ser. B 14 61-86
[2]  
Geelen J(2008)Some open problems on excluding a uniform matroid Adv. Appl. Math. 41 628-637
[3]  
Matthews LR(1977)Bicircular matroids Q. J. Math. Oxf. Ser. 2 213-227
[4]  
Slilaty D(2007)Projective-planar signed graphs and tangled signed graphs J. Comb. Theory Ser. B 97 693-717
[5]  
Whitney H(1933)2-isomorphic graphs Am. J. Math. 55 245-254
[6]  
Zaslavsky T(1981)Characterizations of signed graphs J. Graph. Theory 5 401-406
[7]  
Zaslavsky T(1987)The biased graphs whose matroids are binary J. Comb. Theory Ser. B 42 337-347
[8]  
Zaslavsky T(1989)Biased graphs. I. Bias, balanced, and gains J. Comb. Theory Ser. B 47 32-52
[9]  
Zaslavsky T(1991)Biased graphs. II. The three matroids J. Comb. Theory Ser. B 51 46-72
[10]  
Zaslavsky T(1994)Frame matroids and biased graphs Eur. J. Comb. 15 303-307