Semiclassical Limit to the Vlasov Equation with Inverse Power Law Potentials

被引:0
|
作者
Chiara Saffirio
机构
[1] University of Zürich,Institute of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider mixed quasi-free states describing N fermions in the mean-field limit. In this regime, the time evolution is governed by the nonlinear Hartree equation. In the large N limit, we study the convergence towards the classical Vlasov equation. Under integrability and regularity assumptions on the initial state, we prove strong convergence in trace and Hilbert–Schmidt norm and provide explicit bounds on the convergence rate for a class of singular potentials of the form V(x)=|x|-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V(x)=|x|^{-\alpha}}$$\end{document} , for α∈(0,1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha\in(0,1/2)}$$\end{document} .
引用
收藏
页码:571 / 619
页数:48
相关论文
共 50 条
  • [31] Semiclassical trace formula for the two-dimensional radial power-law potentials
    Magner, A. G.
    Vlasenko, A. A.
    Arita, K.
    PHYSICAL REVIEW E, 2013, 87 (06):
  • [32] ENERGY EIGENVALUE FORMULA FOR POWER-LAW POTENTIALS IN SEMICLASSICAL-TYPE APPROXIMATION
    KENMOKU, M
    KITAJIMA, E
    SHIMANO, Y
    PROGRESS OF THEORETICAL PHYSICS, 1991, 85 (05): : 963 - 968
  • [33] Diffusion limit of the Vlasov equation in the weak turbulent regime
    Bardos, Claude
    Besse, Nicolas
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (10)
  • [34] Klein-Gordon equation with four inverse power term potentials
    Etoga, E. Anemena
    Ema'a, J. M. Ema'a
    Abiama, P. Ele
    Ben-Bolie, G. H.
    MODERN PHYSICS LETTERS A, 2020, 35 (11)
  • [35] INVERSE POWER POTENTIALS
    HUTCHINSON, P
    CONKIE, WR
    MOLECULAR PHYSICS, 1972, 24 (03) : 567 - +
  • [36] WKB and exact wave functions for inverse power-law potentials
    Trost, J.
    Friedrich, H.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 228 (03): : 127 - 133
  • [37] WKB and exact wave functions for inverse power-law potentials
    Trost, J
    Friedrich, H
    PHYSICS LETTERS A, 1997, 228 (03) : 127 - 133
  • [38] The large-time behavior of the Vlasov alignment model with power-law or Riesz potentials
    Chen, Zili
    Yin, Xiuxia
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 448
  • [39] On the semiclassical limit of the focusing nonlinear Schrödinger equation
    School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, United States
    不详
    Phys Lett Sect A Gen At Solid State Phys, 1-2 (75-86):
  • [40] The semiclassical limit of the nonlinear Schrodinger equation in a radial potential
    Benci, V
    D'Aprile, T
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (01) : 109 - 138