In this paper, we prove that if (U, w) is a finite dimensional Jordan baric algebra such that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\text{rad}(U)\subseteq(\text{bar}(U))^3$$
\end{document} then, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\text{rad}(U)=R(U)\cap(\text{bar}(U))^3$$
\end{document}, where R(U) is the nilradical (maximal nil ideal) of U. We also give conditions so that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\text{rad}(U)\subseteq (\text{bar}(U))^3$$
\end{document} and an example showing that such conditions are necessary.