On the Bar-radical of Jordan Baric Algebras

被引:0
作者
J. C. M. Ferreira
H. Guzzo
机构
[1] Universidade Federal do ABC,Centro de Matemática, Computação e Cognição
[2] Universidade de São Paulo,Instituto de Matemática e Estatística
来源
Results in Mathematics | 2007年 / 51卷
关键词
Primary 17D92; Baric algebras; Jordan algebras; bar-radical; nilradical;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove that if (U, w) is a finite dimensional Jordan baric algebra such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\text{rad}(U)\subseteq(\text{bar}(U))^3$$ \end{document} then, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\text{rad}(U)=R(U)\cap(\text{bar}(U))^3$$ \end{document}, where R(U) is the nilradical (maximal nil ideal) of U. We also give conditions so that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\text{rad}(U)\subseteq (\text{bar}(U))^3$$ \end{document} and an example showing that such conditions are necessary.
引用
收藏
页码:43 / 49
页数:6
相关论文
empty
未找到相关数据