Static Controller Synthesis for Peak-to-Peak Gain Minimization as an Optimization Problem

被引:0
作者
B. T. Polyak
M. V. Khlebnikov
机构
[1] Trapeznikov Institute of Control Sciences,
[2] Russian Academy of Sciences,undefined
来源
Automation and Remote Control | 2021年 / 82卷
关键词
linear systems; exogenous disturbance; output feedback; state feedback; optimization; gradient method; Newton method; convergence;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1530 / 1553
页数:23
相关论文
共 18 条
[1]  
Abedor J.(1996)A linear matrix inequality approach to peak-to-peak gain minimization Int. J. Robust Nonlinear Control 6 899-927
[2]  
Nagpal K.(2007)Rejection of bounded exogenous disturbances by the method of invariant ellipsoids Autom. Remote Control 68 467-486
[3]  
Poolla K.(2011)Optimization of linear systems subject to bounded exogenous disturbances: the invariant ellipsoid technique Autom. Remote Control 72 2227-2275
[4]  
Nazin S.A.(1960)Contributions to the theory of optimal control Boletin Soc. Mat. Mexicana 5 102-119
[5]  
Polyak B.T.(1970)On the determination of the optimal constant output feedback gains for linear multivariable systems IEEE Trans. Autom. Control 15 44-48
[6]  
Topunov M.V.(2021)Linear matrix inequalities in control systems with uncertainty Autom. Remote Control 82 1-40
[7]  
Khlebnikov M.V.(2020)Computing closest stable non-negative matrices SIAM J. Matrix Anal. Appl. 41 1-28
[8]  
Polyak B.T.(1997)New results for the bounds of the solution for the continuous Riccati and Lyapunov equations IEEE Trans. Autom. Control 42 118-123
[9]  
Kuntsevich V.M.(undefined)undefined undefined undefined undefined-undefined
[10]  
Kalman R.E.(undefined)undefined undefined undefined undefined-undefined