Some exceptional sets of Borel–Bernstein theorem in continued fractions

被引:0
作者
Lulu Fang
Jihua Ma
Kunkun Song
机构
[1] Nanjing University of Science and Technology,School of Science
[2] Wuhan University,School of Mathematics and Statistics
[3] Université Paris-Est,undefined
[4] LAMA (UMR 8050),undefined
[5] UPEMLV,undefined
[6] UPEC,undefined
[7] CNRS,undefined
来源
The Ramanujan Journal | 2021年 / 56卷
关键词
Continued fractions; Partial quotients; Hausdorff dimension; 11K50; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
Let [a1(x),a2(x),a3(x),…]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[a_1(x),a_2(x), a_3(x),\ldots ]$$\end{document} denote the continued fraction expansion of a real number x∈[0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in [0,1)$$\end{document}. This paper is concerned with certain exceptional sets of the Borel–Bernstein Theorem on the growth rate of {an(x)}n⩾1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{a_n(x)\}_{n\geqslant 1}$$\end{document}. As a main result, the Hausdorff dimension of the set Esup(ψ)=x∈[0,1):lim supn→∞logan(x)ψ(n)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} E_{\sup }(\psi )=\left\{ x\in [0,1):\ \limsup \limits _{n\rightarrow \infty }\frac{\log a_n(x)}{\psi (n)}=1\right\} \end{aligned}$$\end{document}is determined, where ψ:N→R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi :{\mathbb {N}}\rightarrow {\mathbb {R}}^+$$\end{document} tends to infinity as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}.
引用
收藏
页码:891 / 909
页数:18
相关论文
共 34 条
[1]  
Bernstein F(1912)Über eine Anwendung der Mengenlehre auf ein der Theorie der säkularen Störungen herrührendes Problem Math. Ann. 71 417-439
[2]  
Borel E(1909)Les probabilités dénombrables et leurs applications arithmétiques Rend. Circ. Mat. Palermo 27 247-271
[3]  
Borel E(1912)Sur un probléme de probabilités relatif aux fractions continues Math. Ann. 72 578-584
[4]  
Cao C-Y(2013)The growth rate of digits in infinite iterated function systems Stud. Math. 217 139-158
[5]  
Wang B-W(1990)Hausdorff dimension of sets of continued fractions Q. J. Math. Oxford (2) 41 277-286
[6]  
Wu J(2009)On Khintchine exponents and Lyapunov exponents of continued fractions Ergod. Theory Dynam. Syst. 29 73-109
[7]  
Cusick T-W(2013)On the fast Khintchine spectrum in continued fractions Monatsh. Math. 171 329-340
[8]  
Fan A-H(1941)The fractional dimensional theory of continued fractions Math. Proc. Camb. Philos. Soc. 37 199-228
[9]  
Liao L-M(1973)Continued fractions with sequences of partial quotients Proc. Am. Math. Soc. 38 221-227
[10]  
Wang B-W(1928)Zur metrischen Theorie der diopahantischen Approximationen Proc. Mat. Fyz. 36 91-106