Harmonic maps with potential

被引:0
作者
Ali Fardoun
Andrea Ratto
机构
[1] University of Brest,Department of Mathematics
[2] Unical,Dipartimento di Matematica
来源
Calculus of Variations and Partial Differential Equations | 1997年 / 5卷
关键词
58E20; 49A10; 35J20; Harmonic maps; the Landau-Lifshitz equation; the Neumann motion;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M,g) and (N,h) be two Riemannian manifolds, and G : N → ℝ a given function. If f : M → N is a smooth map, we set EG(f)=1/2 ∫M[|df|2 − 2G(f)]dvg. We establish some variational properties and some existence results for the functional EG(f): in particular, we analyse the case of maps into a sphere.
引用
收藏
页码:183 / 197
页数:14
相关论文
共 50 条
[31]   A remark on generalized harmonic maps into spheres [J].
Ge, YX .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (04) :495-506
[32]   Harmonic maps in complex Finsler geometry [J].
Nishikawa, S .
VARIATIONAL PROBLEMS IN RIEMANNIAN GEOMETRY: BUBBLES, SCANS AND GEOMETRIC FLOWS, 2004, 59 :113-132
[33]   A NOTE ON HARMONIC MAPS OF STATISTICAL MANIFOLDS [J].
Simsir, Fatma Muazzez .
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (02) :1370-1376
[34]   Smoothness of harmonic maps for hypoelliptic diffusions [J].
Picard, J .
ANNALS OF PROBABILITY, 2000, 28 (02) :643-666
[35]   X-Elliptic Harmonic Maps [J].
Dragomir, Sorin .
GEOMETRIC METHODS IN PDE'S, 2015, 13 :89-109
[36]   Harmonic Maps Between Alexandrov Spaces [J].
Huang, Jia-Cheng ;
Zhang, Hui-Chun .
JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (02) :1355-1392
[37]   Harmonic and biharmonic maps from surfaces [J].
Baird, P. ;
Loubeau, E. ;
Oniciuc, C. .
HARMONIC MAPS AND DIFFERENTIAL GEOMETRY, 2011, 542 :223-230
[38]   Continuous deformations of harmonic maps and their unitons [J].
Alexandru Aleman ;
María J. Martín ;
Anna-Maria Persson ;
Martin Svensson .
Monatshefte für Mathematik, 2019, 190 :599-614
[39]   Supersymmetric harmonic maps into symmetric spaces [J].
Khemar, Idrisse .
JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (08) :1601-1630
[40]   The Energy Growth Property for Harmonic Maps [J].
Li Hongyi ;
Zhao DiNorth China institute of Water Conservancy and Hydroelectric Power Zhengzhou .
数学季刊, 1996, (01) :53-55