Harmonic maps with potential

被引:0
作者
Ali Fardoun
Andrea Ratto
机构
[1] University of Brest,Department of Mathematics
[2] Unical,Dipartimento di Matematica
来源
Calculus of Variations and Partial Differential Equations | 1997年 / 5卷
关键词
58E20; 49A10; 35J20; Harmonic maps; the Landau-Lifshitz equation; the Neumann motion;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M,g) and (N,h) be two Riemannian manifolds, and G : N → ℝ a given function. If f : M → N is a smooth map, we set EG(f)=1/2 ∫M[|df|2 − 2G(f)]dvg. We establish some variational properties and some existence results for the functional EG(f): in particular, we analyse the case of maps into a sphere.
引用
收藏
页码:183 / 197
页数:14
相关论文
共 50 条
  • [21] Asymptotic behavior of harmonic maps and exponentially harmonic functions
    Chi, DP
    Choi, G
    Chang, J
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2002, 39 (05) : 731 - 743
  • [22] Diagrams and harmonic maps, revisited
    Rui Pacheco
    John C. Wood
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 1051 - 1085
  • [23] SOME RESULTS ON HARMONIC MAPS
    Hong, Min-Chun
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2014, 9 (02): : 187 - 221
  • [24] On the regularity of harmonic functions and spherical harmonic maps defined on lattices
    Thomas, LE
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 262 (02) : 633 - 650
  • [25] Curvature and Bubble Convergence of Harmonic Maps
    Kokarev, Gerasim
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (03) : 1058 - 1077
  • [26] Curvature and Bubble Convergence of Harmonic Maps
    Gerasim Kokarev
    Journal of Geometric Analysis, 2013, 23 : 1058 - 1077
  • [27] Harmonic Maps Between Alexandrov Spaces
    Jia-Cheng Huang
    Hui-Chun Zhang
    The Journal of Geometric Analysis, 2017, 27 : 1355 - 1392
  • [28] Harmonic maps and the topology of complete submanifolds
    Wang, QL
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2006, 68 (3-4): : 419 - 431
  • [29] Harmonic maps and isometric embeddings of the spacetime
    Chervon, S
    Dahia, F
    Romero, C
    PHYSICS LETTERS A, 2004, 326 (3-4) : 171 - 177
  • [30] Harmonic maps in complex Finsler geometry
    Nishikawa, S
    VARIATIONAL PROBLEMS IN RIEMANNIAN GEOMETRY: BUBBLES, SCANS AND GEOMETRIC FLOWS, 2004, 59 : 113 - 132