Harmonic maps with potential

被引:1
|
作者
Ali Fardoun
Andrea Ratto
机构
[1] University of Brest,Department of Mathematics
[2] Unical,Dipartimento di Matematica
来源
Calculus of Variations and Partial Differential Equations | 1997年 / 5卷
关键词
58E20; 49A10; 35J20; Harmonic maps; the Landau-Lifshitz equation; the Neumann motion;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M,g) and (N,h) be two Riemannian manifolds, and G : N → ℝ a given function. If f : M → N is a smooth map, we set EG(f)=1/2 ∫M[|df|2 − 2G(f)]dvg. We establish some variational properties and some existence results for the functional EG(f): in particular, we analyse the case of maps into a sphere.
引用
收藏
页码:183 / 197
页数:14
相关论文
共 50 条
  • [1] Harmonic maps with potential
    Fardoun, A
    Ratto, A
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1997, 5 (02) : 183 - 197
  • [2] On the Heat Flow for Harmonic Maps with Potential
    Ali Fardoun
    Andrea Ratto
    Rachid Regbaoui
    Annals of Global Analysis and Geometry, 2000, 18 : 555 - 567
  • [3] On the heat flow for harmonic maps with potential
    Fardoun, A
    Ratto, A
    Regbaoui, R
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2000, 18 (06) : 555 - 567
  • [4] Harmonic maps with potential from complete manifolds
    CHEN Qun Mathematics Department
    Institute of Mathematics
    ChineseScienceBulletin, 1998, (21) : 1780 - 1786
  • [5] Harmonic maps with potential from complete manifolds
    Chen, Q
    CHINESE SCIENCE BULLETIN, 1998, 43 (21): : 1780 - 1786
  • [6] Harmonic maps
    Grafarend, EW
    JOURNAL OF GEODESY, 2005, 78 (10) : 594 - 615
  • [7] Harmonic maps
    E.W. Grafarend
    Journal of Geodesy, 2005, 78 : 594 - 615
  • [8] Stability and constant boundary-value problems of harmonic maps with potential
    Chen, Q
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2000, 68 : 145 - 154
  • [9] Convergence of Harmonic Maps
    Zahra Sinaei
    The Journal of Geometric Analysis, 2016, 26 : 529 - 556
  • [10] Stability of -Harmonic Maps
    Pirbodaghi, Zahra
    Rezaii, Morteza Mirmohammad
    Torbaghan, Seyed Mehdi Kazemi
    MATHEMATICS, 2018, 6 (06):