Multi-soliton solutions of the N-component nonlinear Schrödinger equations via Riemann–Hilbert approach

被引:0
作者
Yan Li
Jian Li
Ruiqi Wang
机构
[1] Shanghai University,Department of Mathematics
来源
Nonlinear Dynamics | 2021年 / 105卷
关键词
-component NLS equations; Lax pair; Riemann–Hilbert approach; Multi-soliton solutions; 35Q51; 35Q15; 37K10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we utilize the Riemann–Hilbert approach to discuss multi-soliton solutions of the N-component nonlinear Schrödinger equations. Firstly, by transformed Lax pair, we construct the matrix-valued functions P1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{1,2}$$\end{document} that satisfy the analyticity and normalization and the corresponding jump matrix can be determined. Then, in the reflectionless case, we get the multi-soliton solutions ql\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_{l}$$\end{document}(l=1,…,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(l=1,\ldots ,N)$$\end{document} of the N-component nonlinear Schrödinger equations, which are related to the spectral parameter η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}. Particularly, the 2-soliton solutions q1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_{1}$$\end{document}, q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_{2}$$\end{document}, and q3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_{3}$$\end{document} of the three-component nonlinear Schrödinger equations are given and the corresponding 2-soliton diagrams are drawn.
引用
收藏
页码:1765 / 1772
页数:7
相关论文
共 77 条
[1]  
Hilbert D(1990)Mathematics problem Gott. Nachr. 3 253-297
[2]  
Zhou GQ(2007)An N-soliton solution to the DNLS equation based on revised inverse scattering transform J. Phys. A-Math. Theor. 40 13607-670
[3]  
Huang NN(2009)Darboux transformation and multi-soliton solutions for some soliton equations Chaos Soliton Fractal 41 661-353
[4]  
Zhaqilao Z(2009)Symmetry reductions and explicit solutions of a (3+1)-dimensional PDE Appl. Math. Comput. 211 347-166
[5]  
Yong C(2008)The Hirota’s bilinear method and the tanh–coth method for multiple-soliton solutions of the Sawada–Kotera–Kadomtsev–Petviashvili equation Appl. Math. Comput. 200 160-6
[6]  
Li ZB(1983)A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a Wronskian Phys. Lett. A 95 4-3120
[7]  
Mei JQ(1992)Soliton generation for initial-boundary-value problems Phys. Rev. Lett. 68 3117-1049
[8]  
Zhang HQ(2018)Soliton resolution for the derivative nonlinear Schrödinger equation Commun. Math. Phys. 363 1003-33
[9]  
Wazwaz AM(2014)The three-wave equation on the half-line Phys. Lett. A 378 26-632
[10]  
Nimmo JJC(2021)On the Riemann–Hilbert problem for the mixed Chen–Lee–Liu derivative nonlinear Schrödinger equation J. Comput. Appl. Math. 390 113393-6894