A low-energy limit of Yang-Mills theory on de Sitter space

被引:0
作者
Josh Cork
Emine Şeyma Kutluk
Olaf Lechtenfeld
Alexander D. Popov
机构
[1] Leibniz Universität Hannover,Institut für Theoretische Physik and Riemann Center for Geometry and Physics
[2] Middle East Technical University,Physics Department
来源
Journal of High Energy Physics | / 2021卷
关键词
Effective Field Theories; Gauge Symmetry; Sigma Models;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Yang-Mills theory with a compact structure group G on four-dimensional de Sitter space dS4. Using conformal invariance, we transform the theory from dS4 to the finite cylinder I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{I} $$\end{document} × S3, where I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{I} $$\end{document} = (−π/2, π/2) and S3 is the round three-sphere. By considering only bundles P → I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{I} $$\end{document} × S3 which are framed over the temporal boundary ∂I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{I} $$\end{document} × S3, we introduce additional degrees of freedom which restrict gauge transformations to be identity on ∂I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{I} $$\end{document} × S3. We study the consequences of the framing on the variation of the action, and on the Yang-Mills equations. This allows for an infinite-dimensional moduli space of Yang-Mills vacua on dS4. We show that, in the low-energy limit, when momentum along I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{I} $$\end{document} is much smaller than along S3, the Yang-Mills dynamics in dS4 is approximated by geodesic motion in the infinite-dimensional space M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M} $$\end{document}vac of gauge-inequivalent Yang-Mills vacua on S3. Since M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M} $$\end{document}vac ≅ C∞(S3, G)/G is a group manifold, the dynamics is expected to be integrable.
引用
收藏
相关论文
共 86 条
[1]  
Kapec D(2017) = 2 Phys. Rev. D 96 085002-undefined
[2]  
Perry M(2017)undefined JHEP 08 127-undefined
[3]  
Raclariu A-M(2018)undefined JHEP 05 137-undefined
[4]  
Strominger A(2018)undefined JHEP 08 102-undefined
[5]  
Seraj A(2019)undefined Phys. Lett. B 793 141-undefined
[6]  
Van den Bleeken D(2019)undefined Phys. Rev. D 100 065001-undefined
[7]  
Henneaux M(2019)undefined JHEP 05 091-undefined
[8]  
Troessaert C(2019)undefined Phys. Rev. D 100 085017-undefined
[9]  
Hosseinzadeh V(2021)undefined Phys. Rev. D 104 025019-undefined
[10]  
Seraj A(2019)undefined JHEP 10 066-undefined