Practical framework for data-driven RANS modeling with data augmentation

被引:0
作者
Xianwen Guo
Zhenhua Xia
Shiyi Chen
机构
[1] Peking University,State Key Laboratory for Turbulence and Complex Systems, College of Engineering
[2] Zhejiang University,Department of Engineering Mechanics
[3] Southern University of Science and Technology,Department of Mechanics and Aerospace Engineering
来源
Acta Mechanica Sinica | 2021年 / 37卷
关键词
RANS closure; Data augmentation; Machine learning; TBNN;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1748 / 1756
页数:8
相关论文
共 62 条
[11]  
Gatski TB(2017)Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data Phys. Rev. Fluids 2 034603-603
[12]  
Launder BE(2018)Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework Phys. Rev. Fluids 3 074602-7
[13]  
Reece GJ(2019)Machine learning methods for turbulence modeling in subsonic flows around airfoils Phys. Fluids 31 015105-586
[14]  
Rodi W(2019)Neural network models for the anisotropic Reynolds stress tensor in turbulent channel flow J. Turbul. 807 155-289
[15]  
Weller HG(2020)Feature selection and processing of turbulence modeling based on an artificial neural network Phys. Fluids 32 105117-340
[16]  
Tabor G(2020)Discovery of algebraic Reynolds-stress models using sparse symbolic regression Flow Turbul. Combust. 104 579-101
[17]  
Jasak H(2016)A methodology to evaluate statistical errors in DNS data of plane channel flows Comput. Fluids 130 1-undefined
[18]  
Parish EJ(2016)On the accuracy of rans simulations with DNS data Phys. Fluids 28 115102-undefined
[19]  
Duraisamy K(2019)Reynolds-averaged Navier–Stokes equations with explicit data-driven Reynolds stress closure can be ill-conditioned J. Fluid Mech. 869 553-undefined
[20]  
Weatheritt J(2019)A survey on image data augmentation for deep learning J. Big Data 6 60-undefined