Practical framework for data-driven RANS modeling with data augmentation

被引:0
作者
Xianwen Guo
Zhenhua Xia
Shiyi Chen
机构
[1] Peking University,State Key Laboratory for Turbulence and Complex Systems, College of Engineering
[2] Zhejiang University,Department of Engineering Mechanics
[3] Southern University of Science and Technology,Department of Mechanics and Aerospace Engineering
来源
Acta Mechanica Sinica | 2021年 / 37卷
关键词
RANS closure; Data augmentation; Machine learning; TBNN;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1748 / 1756
页数:8
相关论文
共 62 条
[1]  
Spalart PR(1994)A one-equation turbulence model for aerodynamic flows Rech. Aerosp. 1 5-21
[2]  
Allmaras SR(1972)The prediction of laminarization with a two-equation model of turbulence Int. J. Heat Mass Transf. 15 301-314
[3]  
Jones W(1988)Reassessment of the scale-determining equation for advanced turbulence models AIAA J. 26 1299-1310
[4]  
Launder B(2003)Ten years of industrial experience with the SST turbulence model Heat Mass Transf. 4 625-632
[5]  
Wilcox DC(1991)Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach J. Fluid Mech. 227 245-272
[6]  
Menter F(1975)Progress in the development of a Reynolds-stress turbulence closure J. Fluid Mech. 68 537-566
[7]  
Kuntz M(1998)A tensorial approach to computational continuum mechanics using object-oriented techniques Comput. Phys. 12 620-631
[8]  
Langtry R(2016)A paradigm for data-driven predictive modeling using field inversion and machine learning J. Comput. Phys. 305 758-774
[9]  
Speziale CG(2016)A novel evolutionary algorithm applied to algebraic modifications of the RANS stress-strain relationship J. Comput. Phys. 325 22-37
[10]  
Sarkar S(2016)Reynolds averaged turbulence modelling using deep neural networks with embedded invariance J. Fluid Mech. 807 155-166