Low-rank decomposition fabric defect detection based on prior and total variation regularization

被引:0
作者
Xiangyang Bao
Jiuzhen Liang
Yunfei Xia
Zhenjie Hou
Zhan Huan
机构
[1] Changzhou University,School of Computer Science and Artificial Intelligence
[2] University of North Carolina,Department of Mathematics and Statistics
[3] Changzhou University,Jiangsu Engineering Research Center of Digital Twinning Technology for Key Equipment in Petrochemical Process
来源
The Visual Computer | 2022年 / 38卷
关键词
Fabric defect detection; Low rank decomposition model; Total variation regular term; Defect prior; Autoencoder;
D O I
暂无
中图分类号
学科分类号
摘要
Low-rank decomposition model is widely used in fabric defect detection, where a feature matrix is decomposed into a low-rank matrix that represents defect-free regions of the image and a sparse matrix that represents defective regions. Two shortcomings, however, still exist in the traditional low-rank decomposition models. First, they cannot detect the position and shape of the defect very well, and they are usually misjudge the textured background as a defect. Second, they cannot detect some large homogeneous defective block. To solve those problems, we propose a low-rank decomposition model with defect prior and total variation regular term, we call it PTVLR. And it is consisted of the following parts. (1) Defect prior, which characterizes the autoencoder residual image, is used as a prior consideration of detect for improving the separation effect of low-rank texture and defect, (2) total variation regular of term constrains the defect according to the spatial continuity of the defect, (3) LF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L_F}$$\end{document} norm characterizes the image noise part. The performance of PTVLR is evaluated on the box-, star- and dot- patterned fabric databases. And its superior results are shown compared with state-of-the-art methods, that is, 55.58% f-measure and 77.89% true positive rate (TPR) for box-patterned fabrics, 53.20% f-measure and 86.75% TPR for star-patterned fabrics, 69.78% f-measure and 88.33% TPR for dot-patterned fabrics.
引用
收藏
页码:2707 / 2721
页数:14
相关论文
共 60 条
  • [21] Feng D(2018)Automatic fabric defect detection with a multi-scale convolutional denoising autoencoder network model Sensors 18 1064-undefined
  • [22] Li Y(2019)Augmenting photographs with textures using the Laplacian pyramid Vis. Comput. 35 14891500-undefined
  • [23] Huang H(undefined)undefined undefined undefined undefined-undefined
  • [24] Xie Q(undefined)undefined undefined undefined undefined-undefined
  • [25] Yao L(undefined)undefined undefined undefined undefined-undefined
  • [26] Chen Q(undefined)undefined undefined undefined undefined-undefined
  • [27] Giraldo-Zuluaga JH(undefined)undefined undefined undefined undefined-undefined
  • [28] Salazar A(undefined)undefined undefined undefined undefined-undefined
  • [29] Gomez A(undefined)undefined undefined undefined undefined-undefined
  • [30] Cao J(undefined)undefined undefined undefined undefined-undefined