Upward Three-Dimensional Grid Drawings of Graphs

被引:0
|
作者
Vida Dujmović
David R. Wood
机构
[1] Carleton University,School of Computer Science
[2] Universitat Politècnica de Catalunya,Departament de Matemàtica Aplicada II
来源
Order | 2006年 / 23卷
关键词
05C62 (graph representations); graph drawing; grid drawing; three dimensional graph drawing; upward drawing; track layout; upward track layout; upward queue layout; strong star colouring; harmonious colouring;
D O I
暂无
中图分类号
学科分类号
摘要
A three-dimensional grid drawing of a graph is a placement of the vertices at distinct points with integer coordinates, such that the straight line segments representing the edges do not cross. Our aim is to produce three-dimensional grid drawings with small bounding box volume. Our first main result is that every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document}-vertex graph with bounded degeneracy has a three-dimensional grid drawing with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}\left({n^{3/2}}\right)$\end{document} volume. This is the largest known class of graphs that have such drawings. A three-dimensional grid drawing of a directed acyclic graph (dag) is upward if every arc points up in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\textsf{z}$\end{document}-direction. We prove that every dag has an upward three-dimensional grid drawing with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}\left({n^3}\right)$\end{document} volume, which is tight for the complete dag. The previous best upper bound was \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}\left({n^4}\right)$\end{document}. Our main result concerning upward drawings is that every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c$\end{document}-colourable dag (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c$\end{document} constant) has an upward three-dimensional grid drawing with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}\left({n^2}\right)$\end{document} volume. This result matches the bound in the undirected case, and improves the best known bound from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}\left({n^3}\right)$\end{document} for many classes of dags, including planar, series parallel, and outerplanar. Improved bounds are also obtained for tree dags. We prove a strong relationship between upward three-dimensional grid drawings, upward track layouts, and upward queue layouts. Finally, we study upward three-dimensional grid drawings with bends in the edges.
引用
收藏
页码:1 / 20
页数:19
相关论文
共 50 条
  • [1] Upward three-dimensional grid drawings of graphs
    Dujmovic, Vida
    Wood, David R.
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2006, 23 (01): : 1 - 20
  • [2] Three-dimensional grid drawings with sub-quadratic volume
    Dujmovic, V
    Wood, DR
    GRAPH DRAWING, 2004, 2912 : 190 - 201
  • [3] BIPARTITE GRAPHS, UPWARD DRAWINGS, AND PLANARITY
    DIBATTISTA, G
    LIU, WP
    RIVAL, I
    INFORMATION PROCESSING LETTERS, 1990, 36 (06) : 317 - 322
  • [4] Path-Monotonic Upward Drawings of Graphs
    Hong, Seok-Hee
    Nagamochi, Hiroshi
    COMPUTING AND COMBINATORICS (COCOON 2020), 2020, 12273 : 110 - 122
  • [5] Life in a Three-dimensional Grid
    Shapiro, Lucy
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (45)
  • [6] A three-dimensional hybrid grid: DRAGON grid
    Liou, MS
    Zheng, Y
    COMPUTATIONAL FLUID DYNAMICS 2000, 2001, : 113 - 118
  • [7] Three-dimensional drawings of bounded degree trees
    Frati, Fabrizio
    Di Battista, Giuseppe
    GRAPH DRAWING, 2007, 4372 : 89 - +
  • [8] On Upward-Planar L-Drawings of Graphs
    Angelini, Patrizio
    Chaplick, Steven
    Cornelsen, Sabine
    Da Lozzo, Giordano
    Journal of Graph Algorithms and Applications, 2024, 28 (01) : 275 - 299
  • [9] Monotone Grid Drawings of Planar Graphs
    Hossain, Md. Iqbal
    Rahman, Md. Saidur
    FRONTIERS IN ALGORITHMICS, FAW 2014, 2014, 8497 : 105 - 116
  • [10] Rectangular grid drawings of plane graphs
    Rahman, MS
    Nakano, S
    Nishizeki, T
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1998, 10 (03): : 203 - 220