Pressure effect on the order–disorder transformation in L10 FeNi

被引:0
作者
Li-Yun Tian
Olle Eriksson
Levente Vitos
机构
[1] Royal Institute of Technology,Applied Materials Physics, Department of Materials Science and Engineering
[2] Uppsala University,Division of Materials Theory, Department of Physics and Astronomy
[3] Örebro University,School of Science and Engineering
[4] Wigner Research Center for Physics,Research Institute for Solid State Physics and Optics
来源
Scientific Reports | / 10卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The ordered phase of the FeNi system is known for its promising magnetic properties that make it a first-class rare-earth free permanent magnet. Mapping out the parameter space controlling the order–disorder transformation is an important step towards finding growth conditions that stabilize the L10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L1_0$$\end{document} phase of FeNi. In this work, we study the magnetic properties and chemical order-disorder transformation in FeNi as a function of lattice expansion by utilizing ab initio alloy theory. The largest volume expansion considered here is 29% which corresponds to a pressure of -25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-25}$$\end{document} GPa. The thermodynamic and magnetic calculations are formulated in terms of a long-range order parameter, which is subsequently used to find the ordering temperature as a function of pressure. We show that negative pressure promotes ordering, meaning that synthetic routes involving an increase of the volume of FeNi are expected to expand the stability field of the L10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L1_0$$\end{document} phase.
引用
收藏
相关论文
共 53 条
[1]  
Kojima T(2014)Fe–Ni composition dependence of magnetic anisotropy in artificially fabricated L1 J. Phys. Condens. Matter 26 064207-3220
[2]  
Skomski R(2013)-ordered FeNi films IEEE Trans. Magn. 49 3215-4
[3]  
Lewis LH(2014)Predicting the future of permanent-magnet materials J. Phys. Condens. Matter 26 064213-137
[4]  
Lewis LH(2014)Inspired by nature: Investigating tetrataenite for permanent magnet applications IEEE Magn. Lett. 5 1-269
[5]  
Cui J(2018)De magnete et meteorite: Cosmically motivated materials Acta Mater. 158 118-2214
[6]  
Frisk A(2017)Current progress and future challenges in rare-earth-free permanent magnets J. Phys. D Appl. Phys. 50 085009-20
[7]  
Hase TP(2014)Strain engineering for controlled growth of thin-film FeNi L1 J. Phys. D Appl. Phys. 47 425001-7
[8]  
Svedlindh P(2016)Addition of Co to L1 Acta Mater. 116 263-824
[9]  
Johansson E(2007)-ordered FeNi films: Influences on magnetic properties and ordered structures J. Magn. Magn. Mater. 310 2213-646
[10]  
Andersson G(2017)Discovery of process-induced tetragonality in equiatomic ferromagnetic FeNi Sci. Rep. 7 13216-140