Some new Opial type dynamic inequalities via convex functions and applications

被引:0
作者
S. H. Saker
J. Alzabut
A. G. Sayed
D. O’Regan
机构
[1] Mansoura University,Department of Mathematics, Faculty of Science
[2] Prince Sultan University,Department of Mathematics and General Sciences
[3] OSTIM Technical University,Group of Mathematics, Faculty of Engineering
[4] Al-Azhar University,Department of Mathematics, Faculty of Science
[5] National University of Ireland,School of Mathematics, Statistics and Applied Mathematics
来源
Advances in Difference Equations | / 2021卷
关键词
Opial’s inequality; Hölder’s inequality; Jensen’s inequality; Time scales; 26A15; 26A51; 26D10; 26D15; 39A13; 34A40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove some new Opial-type dynamic inequalities on time scales. Our results are obtained in frame of convexity property and by using the chain rule and Jensen and Hölder inequalities. For illustration purpose, we obtain some particular Opial-type inequalities reported in the literature.
引用
收藏
相关论文
共 50 条
[31]   Some Hermite-Hadamard and Opial dynamic inequalities on time scales [J].
Mohammed, Pshtiwan Othman ;
Ryoo, Cheon Seoung ;
Kashuri, Artion ;
Hamed, Y. S. ;
Abualnaja, Khadijah M. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
[32]   SOME DYNAMIC WIRTINGER-TYPE INEQUALITIES AND THEIR APPLICATIONS [J].
Agarwal, Ravi P. ;
Bohner, Martin ;
O'Regan, Donal ;
Saker, Samir H. .
PACIFIC JOURNAL OF MATHEMATICS, 2011, 252 (01) :1-18
[33]   Some new dynamic Hardy-type inequalities with kernels involving monotone functions [J].
Saker, Samir H. ;
Saied, Ahmed, I ;
Krnic, Mario .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)
[34]   Some new dynamic Hardy-type inequalities with kernels involving monotone functions [J].
Samir H. Saker ;
Ahmed I. Saied ;
Mario Krnić .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
[35]   NEW INEQUALITIES FOR POSITIVE CONVEX FUNCTIONS [J].
Ighachane, Mohamed Amine ;
Akkouchi, Mohamed ;
Sababheh, Mohammad .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (02) :703-716
[36]   Some New Generalizations of Reverse Hilbert-Type Inequalities via Supermultiplicative Functions [J].
Rezk, Haytham M. ;
Saied, Ahmed, I ;
AlNemer, Ghada ;
Zakarya, Mohammed .
SYMMETRY-BASEL, 2022, 14 (10)
[37]   Note on some inequalities for generalized convex functions [J].
Bakula, MK ;
Pecaric, J .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2006, 9 (01) :43-52
[38]   On Ostrowski-Mercer's Type Fractional Inequalities for Convex Functions and Applications [J].
Sahoo, Soubhagya Kumar ;
Kashuri, Artion ;
Aljuaid, Munirah ;
Mishra, Soumyarani ;
De La Sen, Manuel .
FRACTAL AND FRACTIONAL, 2023, 7 (03)
[39]   SOME NEW KARAMATA TYPE INEQUALITIES AND THEIR APPLICATIONS TO SOME ENTROPIES [J].
Furuichi, Shigeru ;
Moradi, Hamid Reza ;
Zardadi, Akram .
REPORTS ON MATHEMATICAL PHYSICS, 2019, 84 (02) :201-214
[40]   Ostrowski Type Inequalities via Some Exponentially s-Preinvex Functions on Time Scales with Applications [J].
Lai, Kin Keung ;
Mishra, Shashi Kant ;
Singh, Vandana .
SYMMETRY-BASEL, 2023, 15 (02)