Optimal binary LCD codes

被引:0
作者
Stefka Bouyuklieva
机构
[1] St. Cyril and St. Methodius University,Faculty of Mathematics and Informatics
来源
Designs, Codes and Cryptography | 2021年 / 89卷
关键词
Optimal binary linear codes; LCD codes; 94B05; 94B65;
D O I
暂无
中图分类号
学科分类号
摘要
Linear complementary dual codes (shortly LCD codes) are codes whose intersections with their dual codes are trivial. These codes were first introduced by Massey in 1992. Nowadays, LCD codes are extensively studied in the literature and widely applied in data storage, cryptography, etc. In this paper, we prove some properties of binary LCD codes using their shortened and punctured codes. We also present some inequalities for the largest minimum weight dLCD(n,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{LCD}(n,k)$$\end{document} of binary LCD [n, k] codes for given length n and dimension k. Furthermore, we give two tables with the values of dLCD(n,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{LCD}(n,k)$$\end{document} for k≤32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\le 32$$\end{document} and n≤40\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\le 40$$\end{document}, and two tables with classification results.
引用
收藏
页码:2445 / 2461
页数:16
相关论文
共 32 条
  • [1] Araya M(2020)On the minimum weights of binary linear complementary dual codes Cryptogr. Commun. 12 285-300
  • [2] Harada M(2021)Characterization and classification of optimal LCD codes Des. Codes Cryptogr. 89 617-640
  • [3] Araya M(2016)Complementary dual codes for counter-measures to side-channel attacks Adv. Math. Commun. 10 131-150
  • [4] Harada M(2018)Linear codes over IEEE Trans. Inform. Theory 64 3010-3017
  • [5] Saito K(2019) are equivalent to LCD codes for IEEE Trans. Inf. Theory 65 39-49
  • [6] Carlet C(2017)New characterization and parametrization of LCD codes Int. J. Inf. Coding Theory 4 116-128
  • [7] Guilley S(2018)The combinatorics of LCD codes: linear programming bound and orthogonal matrices Cryptogr. Commun. 10 719-728
  • [8] Carlet C(2004)Some bounds on binary LCD codes Discret. Math. 283 255-261
  • [9] Mesnager S(2019)Binary optimal linear rate Cryptogr. Commun. 11 677-696
  • [10] Tang C(1992) codes Discret. Math. 106 337-342